News

  • Our FPGA-accelerated bird detector is now working at Airport Oberpfaffenhofen.

    Our FPGA-accelerated bird detector at Airport Oberpfaffenhofen
    Our FPGA-accelerated bird detector at Airport Oberpfaffenhofen(c) 2024 TUM
    The container for the FPGA and cable connection
    The container for the FPGA and cable connection(c) 2024 TUM
    The container for the FPGA and cable connection
    The container for the FPGA and cable connection(c) 2024 TUM

    Our bachelor student, Gabor Fogarasi, deployed an FPGA-accelerated bird detector at Airport Oberpfaffenhofen for bird strike prevention based on his engineering project in WiSe 23/24, as part of Brandenburg / Bayern Action for AI Hardware (BB-KI Chips).

    The underlying detection model was pre-trained by quantization-aware training to reduce the model size and increase inference speed using low-precision model parameters. Experiments show 50 times faster detection speed without significantly compromising accuracy than the uncompressed model. The massive parallelism of FPGA further ensures the efficiency of online inference.

    Birds are monitored by an IP camera connected to the FPGA board running the detection model in the backend at approx. 2 FPS for 4K inputs. A 3D-printed detector container is also designed for essential waterproofing and heat sinking. The gif shows some birds detected at the scene.

  • Our team had its regular workshop in Raitenhaslach

    Our group in Raitenhaslach
    Our group in Raitenhaslach(c) 2024 TUM
    Joint groups of BGD and RSA during our hike to church Marienberg
    Joint groups of BGD and RSA during our hike to church Marienberg(c) 2024 TUM

    Our group just had a workshop in Raitenhaslach, which took place from April 8th to 9th. During these two days, we joined forces with Katharina Anders’ Group for “Remote Sensing Applications” to work on two topics:

    Assess the working progress of all different projects and dissertations and develop new ideas for our research. For the first, all Ph.D. students presented their current status and results, while for the second part, we chose the interactive format of research speed dating. Both parts allowed learning about the different focus topics of all the group members and develop new ideas for innovative research approaches in the future.

    Apart from the research-oriented program points, this event also left plenty of opportunities to connect with the other BGD fellows and grow together as a team. We walked together to the Marienberg church and enjoyed the summer-like weather in April. We are already looking forward to the next workshop!

  • We won the 2nd place in the GISCUP at ACM SIGSPATIAL

    Xuanshu Luo presenting our results at SIGSPATIAL 2023
    Xuanshu Luo presenting our results at SIGSPATIAL 2023(c) 2023 H. Li

    In a significant achievement, we, the Professorship for Big Geospatial Data Management, have clinched the 2nd place in the 12th SIGSPATIAL Cup competition (GISCUP 2023). Our winning paper, “Exploring GeoAI Methods for Supraglacial Lake Mapping on Greenland Ice Sheet,” stands as a collaborative effort by our dedicated research team – Xuanshu Luo, Paul Walther, Wejdene Mansour, Balthasar Teuscher, Johann Maximilian Zollner, Hao Li, and Martin Werner (Luo et al., 2023).

    GISCUP, conducted alongside the 2023 ACM SIGSPATIAL conference, is an annual contest hosted by SIGSPATIAL to foster innovation in geospatial research. The official announcement of the winners took place at the ACM SIGSPATIAL conference in November 2023.

    The focus of this year’s challenge was on the auto-identification of supraglacial lakes on the Greenland ice sheet from satellite imagery. Our goal was to develop an automated system capable of tagging these lakes as polygons from a single image, aiding in the tracking of their behavior across multiple summer melt seasons. Our winning paper showcases the practical application of Computer Vision Models to address this specific challenge. Additionally we investigated the potentials of the new category of large foundation models, namely the Segment Anything Model (SAM), in this field of research.

    The SIGSPATIAL Cup win also brings with it a Travel Grant to the 2023 ACM SIGSPATIAL conference, providing us with the opportunity to present our work and engage with experts in the geospatial community. Such, our success in the GISCUP reinforces our standing as contributors to practical and innovative geospatial research.

    If you are interested in our research, also take a look at the corresponding Github Repository.

    Resources

    1. Luo, X., Walther, P., Mansour, W., Teuscher, B., Zollner, J. M., Li, H., & Werner, M. (2023). Exploring GeoAI Methods for Supraglacial Lake Mapping on Greenland Ice Sheet. The 31st ACM International Conference on Advances in Geographic Information Systems (SIGSPATIAL ’23), November 13–16, 2023, Hamburg, Germany. https://doi.org/10.1145/3589132.3629971 [PDF] [Online]
  • Our chair will be represented at ACM SIGSPATIAL GIS in Hamburg

    Our professorship is thrilled to announce its active participation in the 31st International Conference on Advances in Geographic Information Systems (SIGSPATIAL ‘23), taking place in Hamburg, Germany. We are co-organizing the conference, are co-chairing multiple workshops, and we are presenting quite a few research results from colleagues of the chair and our collaborators.

    Research Papers

    We are excited to present the following scientific papers:

    1. Rethink Geographical Generalizability with Unsupervised Self-Attention Model Ensemble: A Case Study of OpenStreetMap Missing Building Detection in Africa (full paper) Authors: Hao Li, Jiapan Wang, Johann Maximilian Zollner, Gengchen Mai, Ni Lao, Martin Werner

    2. Bavaria Buildings - A Novel Dataset for Building Footprint Extraction, Instance Segmentation, and Data Quality Estimation (Data and Resources Paper) Authors: Martin Werner, Hao Li, Johann Maximilian Zollner, Balthasar Teuscher, Fabian Deuser

    3. Exploring GeoAI Methods for Supraglacial Lake Mapping on Greenland Ice Sheet (GIS cup) Authors: Xuanshu Luo, Paul Walther, Wejdene Mansour, Balthasar Teuscher, Johann Maximilian Zollner, Hao Li, Martin Werner

    4. Signal Separation in Global, Temporal Gravity Data (GeoAI workshop paper) Authors: Betty Heller-Kaikov, Roland Pail and Martin Werner

    5. Towards GeoAI as a Containerized Microservice (SRC paper) Authors: Jiapan Wang

    Workshops

    We are delighted to co-host two workshops:

    1. 11th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data (BigSpatial 2023) Workshop Co-Chairs from our group: Martin Werner Description: Join us to explore the challenges and opportunities of processing and analyzing big geospatial data, fostering collaboration and knowledge exchange.

    2. 2nd ACM SIGSPATIAL International Workshop on Searching and Mining Large Collections of Geospatial Data Workshop Co-Chairs from our group: Hao Li, Martin Werner Description: Engage with experts in the efficient searching and mining of large geospatial data collections, contributing to the development of cutting-edge solutions.

    For further information about our participation and research reach out to us on the conference. We look forward to sharing insights, learning, and contributing to the vibrant academic community at SIGSPATIAL ‘23. For detailed information on all our published papers refer to the publications page.

  • Four Minute Presentation on Onboard Machine Learning for Physical Layer Signal Processing on Telecom-Satellites

    Our PhD student Michael Petry has prepared a four minute thesis presentation on his Phd project Onboard Machine Learning for Physical Layer Signal Processing on Telecom-Satellites for the Four-Minute-Thesis (4MT) Competition hosted by IEEE Globecom.

    In this challenge, PhD students are invited to submit a max. 4 minute long video explaining their PhD topic to a non-technical audience. In this video, Michael is explaining how he tries to implement software-defined radio systems using mainly (or only?) neural networks thus enabling AI specific hardware systems such as Xilinx Versal FPGAs to take over more aspects of the communication system.

  • SoilCarbonHack(athon): Soil Science met Data Science

    Snapshots from talks by Carmen Höschen, Steffen Schweizer, Yahan Hu, Maximilian Zollner, and Martin Werner
    Snapshots from talks by Carmen Höschen, Steffen Schweizer, Yahan Hu, Maximilian Zollner, and Martin Werner(c) 2023 SoilCarbonHack
    Soil-driven and data-driven minds.
    Soil-driven and data-driven minds.(c) 2023 SoilCarbonHack

    In cooperation with the Chair of Soil Science at the Technical University of Munich, the Professorship Big Geospatial Data Management hosted a hackathon as part of the project SoilCarbonHack.

    We gathered soil-driven and data-driven minds to work together on microscale NanoSIMS images and improve our understanding of soil carbon storage.

    We had new ideas, engaging discussions, and could benefit from each others field knowledge during this interdisciplinary meeting.

    If you are interested in the hands-on tutorials, we provide the related Jupyter Notebooks and an example NanoSIMS image on our hackathon page.

    Stay tuned for upcoming events and papers from SoilCarbonHack!

    For information on the project and upcoming events please refer to the project page.

  • 3DGeoInfo 2023 talk on efficient point cloud query

    Hao Li presenting our paper at 3DGeoInfo 2023
    Hao Li presenting our paper at 3DGeoInfo 2023(c) 2023 H. Li

    Hao Li was presenting results of our efficient point cloud query paper (Teuscher et al., 2024) led by Balthasar Teuscher at the 18th 3DGeoInfo 2023 conference in Munich.

    In this paper, we propose an efficient in-memory point cloud processing solution and implementation demonstrating that the inherent technical identity of the memory location of a point (e.g., a memory pointer) is both sufficient and elegant to avoid gridding as long as the point cloud fits into the main memory of the computing system. During the conference, we have collected a handful of nice comments and suggestions for the participants, which will be integrated in the future development. This paper is a nice joint effort with TUM colleagues from Chair of Engineering Geodesy (Prof. Holst) and Professorship for Remote Sensing Applications (Prof. Anders).

    Resources

    1. Teuscher, B., Geißendörfer, O., Luo, X., Li, H., Anders, K., Holst, C., & Werner, M. (2024). Efficient In-Memory Point Cloud Query Processing. In T. H. Kolbe, A. Donaubauer, & C. Beil (Eds.), Recent Advances in 3D Geoinformation Science (pp. 267–286). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-43699-4_16 [PDF] [Online]
  • CERN Openlab Summer Student Programme Talk on Quantum Machine Learning and Optimization

    Carla Rieger was a speaker in this year’s CERN Openlab summer student programme, where she presented on Quantum Machine Learning and Quantum Optimization. Furthermore, her talk was showcasing successful CERN use-cases to illustrate current practical applications of quantum algorithms in the field.

    Carla Rieger presenting at the CERN Openlab summer student lecture programme.
    Carla Rieger presenting at the CERN Openlab summer student lecture programme.(c) 2023 C.Rieger

    More details, including the lecture slides and a recording of the talk, can be found here.

  • First place in the cross-view geo-localization competition at the ACM Multimedia

    Certificate of Achievement
    Certificate of AchievementACM 1st Workshop on UAVs in Multimedia

    We are proud to announce that a team led by Fabian Deuser won the first place at the cross-view geolocalization competition.

    In this challenge, the organizers presented a novel, challenging cross-view geo-localization dataset, called University160k. The motivation was to provide a comparably large satellite-view dataset for geolocalization to increase the number of similar features in different images. With a strategy of using pseudolabels to get a good alignment of latent space features and the localization problem, we were able to outperform all other submissions in the challenge. A paper on this topic is accepted and will be presented in the workshop.

    Congratulations to our fresh (first month?) PhD student Fabian Deuser, who was the lead in all of this work.

    This challenge has triggered a new line of research in our group as we believe that the true geolocalization problem is even harder than already depicted in the enlarged University160k dataset. On the other hand, the localization problem is typically a local problem as a coarse location might already be known in most applications. Furthermore, we will extend this activity to the indoor space, where even a limited-scalability reliable indoor geolocalization from images would be very helpful.

    So stay tuned for the workshop presentation, the paper, and our follow-up work maybe including additional geolocalization challenges.

  • SoilCarbonHack(athon)

    In cooperation with the Chair of Soil Science at the Technical University of Munich, the Professorship Big Geospatial Data Management is hosting a hackathon as part of the project SoilCarbonHack.
    Please refer to the project page for detailed information on the project and events.

    When?

    12.10.2023 - 13.10.2023

    Where?

    Room 0120 in 0501 Institutsbau
    Technical University of Munich
    Arcisstraße 21
    80333 München

    Contact

    Johann Maximilian Zollner
    maximilian.zollner@tum.de
    Professorship of Big Geospatial Data Management
    Lise-Meitner-Str. 9
    85521 Ottobrunn

    Yahan Hu
    yahan.hu@tum.de
    Chair of Soil Science
    Emil-Ramann-Straße 2
    85354 Freising

  • Talk on Foundation Models for GeoAI delivered by Prof. Wenwen Li

    Prof. Wenwen Li  presenting her latest research on geospatial image interpretation and foundation models for GeoAI
    Prof. Wenwen Li presenting her latest research on geospatial image interpretation and foundation models for GeoAI(c) 2023 M. Werner

    On July 13, the room was packed with colleagues and students when Wenwen Li revealed to us her experience from adapting vision foundation models to geospatial images. It was very interesting for all of us and as the discussion grew into a long session shows how important this topic is.

    In order to sustain the exchange and to turn the frontal oneway communication of such a presentation format into a more valuable interactive exchange, we organize a follow-up and lessons learnt session in three months.

    Ressources

  • A new vision kit for our lab

    The Xilinx KV260 board brings a Xilinx SoC with camera peripherals onto a 10cm x 10cm board
    The Xilinx KV260 board brings a Xilinx SoC with camera peripherals onto a 10cm x 10cm boardImage: Martin Werner

    A novel teaching aid in our lab. The Xilinx AI System KV260 provides all you need for embedded and mobile AI applications. Full FPGA board with a small form factor. Easy to use as it runs a Ubuntu Linux.

    Students will learn more about mobile AI with this excellent board.

  • Talk at NFDI4Earth Plenary

    Hao Li presenting our Atlas4Water Incubator Project at NFDI4Earth Plenum
    Hao Li presenting our Atlas4Water Incubator Project at NFDI4Earth Plenum(c) 2023 M. Werner

    Hao Li was presenting aspects of our AtlasHDF infrastructure (Werner & Li, 2022) which was explored for surface water segmentation in the context of NFDI4Earth.

    In a nutshell, we propose a shift in geospatial big data from Geo to NoGeo quite in the same way as the big data community sacrificed the SQL language in big data towards NoSQL infrastructures. OGC standards and their libraries are valuable assets for data management, interpretation, and preservation. But they have never been designed for computation. While our approach is less powerful in spatial operations at the moment, we have zero dependencies beyond HDF5. But this is mature, stable, and - most importantly - an integral part of both tensorflow and pytorch. The philosophy of this approach is simplicity: our data can be used by every deep learning scientist out of the box. And the best: supercomputers read it in parallel…

    Ressources

    1. Werner, M., & Li, H. (2022). AtlasHDF: An Efficient Big Data Framework for GeoAI. 1–7. https://doi.org/10.1145/3557917.3567615 [PDF] [Online]
  • Aerospace Bachelor starts

    The new semester sees the arrival of the very first students at the TU Munich to study our newly established Bachelor Aerospace. We participate in this study program with the two computer science lectures (“Computational Foundations I”, “Computational Foundations II”) and teach the basics of algorithms, programming, and technical programming, and computer engineering, so that our students can develop mission critical software. In times of digitalization, there is probably no subject in which the long-term theoretical foundation (computer science as the foundation of all data science) is as important as actual practical skills (software as a universal tool). Accordingly, we adopt the didactic approach 4CID, which emphasizes learning through practical tasks in in a procedural way (step by step: increasing complexity with decreasing assistance) and thematic embedding (application examples). (examples of application) is in the spotlight.

    We are looking forward to this new lecture series, which will be in parts also be used in the next semester in the course of geodesy and geoinformatics.

  • MINT Entdeckerinnen 2021

    This year, we again participated in the MINTEntdeckerinnen program of the TU Munich. Six young women between the ages of 15 and 18 were our guests during the school vacations to gain experience in our field.

    This year, we selected “autonomous aerial drones” as the topic and learned and tried out all the necessary elements needed to simulate autonomous drones and develop the necessary software.

    We learned about MATLAB and SimuLink, got to grips with the Unity game engine, implemented a simulation of drone flight dynamics in MATLAB and connected it to the game engine. In the end we were able towe were able to plan trajectories, fly off, and solve a safe-and-rescue scenario.

    One or two drones crashed in the simulation or flew through houses, but in the end all six students solved the problem independently and practically.

  • Gastvorlesung - Space Data Strategy: How to Gain Business Value from Geospatial Data

    We are happy to announce the following guest lecture:

    Friday, July 31st,2020 13:00 – 15:00 CET.

    In order to attend, you need to register for this lecture.

    Registration Information

    Speaker

    Martin Szugat

    Abstract

    Companies are drowning in data, but are thirsty for information. Although e.g. ESA’s Copernicus Open Data Strategy has exploded the availability & quality of geospatial data, only a small number of companies are using it. Because most companies only see their own data instead of seeing the opportunities and looking for new data. A data strategy is the business plan for data & analytics and data thinking is the method to develop this business plan. In this lecture you will get to know some useful tools to design data products yourself.

    Vita

    Martin Szugat is the founder and managing director of Datentreiber, a data strategy consulting firm. For his projects e.g. for Roche, ProSiebenSat1 and many more, he applies design thinking to data science and has developed a method and open source tools for data strategy design. Besides he is the program director of the Predictive Analytics & Deep Learning World conferences in Europe. He studied bioinformatics at LMU & TUM. When he has free time, he devotes himself to AI and Space Data and tweets about it on http://acceleran.do. The presentation is mandatory for students of the lecture Big Geospatial Data and open for all interested guests.

  • MINT-Erlebnis - Program Available

    We are proud and happy to be part of this years program MINT-Erlebnis.

    The professorship for Big Geospatial Data Management provides a project in which schoolgirls build a sandbox with augmented reality functions.

    Further information is available from the program’s page: <www.explore.tum.de/minterlebnis>

    We whish you a lot of fun with this program.

  • Interview with student council

    The student council of LRG has asked me a few questions about my work and beyond. You can find it (in German language) in the first issue of the journal of the student council called Navigator:

  • Prof. Martin Werner starts at TUM

    Today, I am starting my professorship for big geospatial data management. In these days, a virus is affecting all of us and in this situation it is unfortunately not possible to do a large party. But we will have this party as soon as we can meet in my Big Geoespatial Data Management lab.

    For now, we concentrate on excellent teaching and research in times of home-office and online courses. .

  • Valentines Day as seen on Twitter stream

    Valentines day is a very dominant hashtag. The following shows a very short excerpt of the Twitter 1% public stream. Look at how Valentines day dominates hashtag distribution for this day.


© 2020 M. Werner