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Abstract
Quantum state preparation circuits for loading classical data into quantum computers significantly influence the performance
and complexity of variational quantum algorithms within hybrid quantum-classical systems. Since real-world data is often
high-dimensional and mapping it to a quantum state is costly and non-trivial, it is transformed on classical computers to
overcome limitations regarding quantum register size and circuit complexity. We present a data transformation method using
Bloom filters to represent classical data for quantum state preparation circuits. Further, the paper illustrates that tiny fragments
of this classical data encoding can be used for quantum machine learning to make an ensemble of the resulting quantum
models surprisingly powerful. Due to the representation of the transformed data as a fragmented bit array, the quantum state
preparation circuit only relies on a single rotational gate per qubit and small quantum registers. We demonstrate our approach
and its representation power in a series of simulations. The simulations indicate that the randomized transformation provides
diversity for ensemble models and that even small bit arrays with high error rates in data representation are sufficient for
binary classification tasks.

Keywords Data transformation · Data structure · Data encoding · Bloom filter · Quantum state preparation ·
Quantum machine learning · Ensemble learning

1 Introduction

Recent work shows that current and near-term quantum
computers will likely not show a practical advantage over
classical computers for big data problems due to input and
output bandwidth limitations (Hoefler et al. 2023). There, it
is concluded that instead, computational problems of large
complexity formulated using small input data are more likely
to gain from this technology. The reason is that, especially in
the “noisy intermediate-scale quantum” era, quantum com-
puters are limited in the number of quantum bits and the
depth of a series of operations. Hardware noise and faults
during computation demand small registers of qubits and pre-
vent circuits with high depth from being used. The impact
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of quantum noise further depends on the circuit complexity
and architecture and strongly affects the quality of results of
quantum programs (Pan et al. 2023).

Nevertheless, the so-calledhybrid quantum-classical algo-
rithmsprovide a promising class of algorithms for current and
near-term hardware (McClean et al. 2016; Benedetti et al.
2019). For example, variational or parameterized quantum
circuits can be inserted into otherwise classical programs. In
this setting, a classical program delegates part of the com-
putation to a quantum kernel, which takes classical data as
input and provides classical data back to the classical pro-
gram through measurement. The quantum kernel is often
called a variadic quantum circuit, as it is also typically
parametrized with classical data. In quantum machine learn-
ing, for example, a classical optimization algorithm aims to
find good parameters for a variadic circuit to solve a machine
learning problem. In this context, particular parameterized
quantum circuits for machine learning are a well-studied
field, and especially, quantum classifiers have received sub-
stantial attention in recent years (Lu and Braunstein 2014;
Farhi and Neven 2018; Havlíček et al. 2019; Adhikary et al.
2020; Li et al. 2022b). Specifically, an efficient design of
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the circuit architecture in terms of structure and layout of
quantum gates is crucial to maximize the use of quantum
hardware (Sim et al. 2019). Consequently, an efficient and
compact circuit design with low depth and parameter count
is crucial when utilizing current quantum hardware for real-
world tasks.

A unique challenge in quantum computing is finding effi-
cient methods to bring classical data into a quantum state
on which quantum circuits can operate. Therefore, imple-
menting a state preparation circuit is required, which is a
non-trivial task. An inherent problem in this context is that
quite a few short-state preparation circuits are known, but
typically, limited in the amount of classical information, they
can encode. For example, angle encoding can encode N clas-
sical bits on N qubits where N ∈ N

+ is a positive integer.
Quantum state preparation significantly influences the per-
formance of quantum algorithms, and considerable efforts
were made to improve quantum state preparation (Gil Vidal
and Theis 2020; Pérez-Salinas et al. 2020; Caro et al. 2021;
Schuld 2021). More specifically, in the case of quantum clas-
sifiers, the chosen quantum encoding method determines the
robustness against noise and the learnable decision bound-
aries of the classifier (LaRose and Coyle 2020). Also, with
increasing width and depth of the state preparation circuit,
the capabilities of quantumclassifiers get limitedwith respect
to the distinguishability of encoded states (Li et al. 2022a).
However, the most direct impact on the performance of a
variational circuit is that the depth of the state preparation
and the circuit add up, severely limiting the use of quantum
algorithms for real-world data.

In this context, we introduce an approach to represent
classical data in a few bits such that the range of classical
problems on which these circuits can be applied is increased.
One of the key ideas is that beyond a low-dimensional rep-
resentation of data, a lossy representation can be applied in
which a quantum classifier is provided only with a limited
amount of information. We show how multiple classifiers
with non-overlapping information can be combined into a
powerful overall classifier. This allows us to solve classifica-
tion problems by distributing the required input information
across multiple tiny quantum circuits. In this paper, we
mainly consider low-cardinality data of high dimensional-
ity. This data type can be quantized in all dimensions into
comparably few classes but can have exceptionally high
dimensionality. For example, binary images can be under-
stood by humans and machine learning with as few as 1
bit per pixel. Still, many pixels are typically required as the
actual information is distributed spatially across the image.

The scientific contribution of this paper is threefold. We
introduce a data representation framework to encode clas-
sical, high-dimensional, low-cardinality data, including, but
not limited to, binary images into bit sequences. Furthermore,
we present a technique to split the bit sequence into multiple

fragments that cover the information content of the longer
sequence. Finally, we validate the previous concepts with
classical and quantum machine learning in various numeri-
cal simulations and evaluate the performanceof the approach.
Note that, for completeness, we also present and investigate
an extension that allows floating point data to be represented.
However, this comes at a comparably high representation cost
in the proposed framework and will, in most cases, not out-
perform direct floating point encoding mechanisms such as
angle encoding.

The remainder of this work is structured as follows. In
Sect. 2, we discuss the fundamental concepts connected to
this work, which are the probabilistic data structures Bloom
filter and GloBiMaps, the classical and quantum parts of
hybrid quantum-classical systems, and ensemble learning.
Next, we present our pseudo-randomized data encoding for
quantum state preparation and a qualitative visualization and
discussion of the impact of randomization and lossy com-
pression and its connection to ensemble learning in Sect. 3.
Following, we show the first results and the surprising repre-
sentation power of the randomized encoding with supervised
machine learning in Sect. 4. We present and discuss the
numerical simulations regarding setup, findings, and results
and answer the questions: “Can we sufficiently represent
real-world data with fragments of randomized few-bit repre-
sentations for classification?”, “How does the false positive
rate of a Bloom filter impact the model’s performance?”, and
“Does the fragmentation of a filter provide sufficient diver-
sity for an ensemble model?”. Finally, we summarize and
conclude the work in Sect. 5.

2 Fundamental concepts and related work

This section discusses the fundamental concepts and related
work connected to this paper. First, wewill present the proba-
bilistic data structures Bloom filter (Bloom 1970) and Global
Binary Maps (Werner 2019a), which are core concepts of
this work. Then, we will look into hybrid quantum-classical
systems formachine learning and define parameterized quan-
tum circuits and related concepts. Finally, we will define and
show how ensembles of weak base classifiers can be used to
enhance quantum machine learning.

2.1 Bloom filter

The Bloom filter is a space-efficient probabilistic data struc-
ture proposed by Burton Howard Bloom in 1970 (Bloom
1970). The compact structure represents a set as a bit array
and enables efficient set membership queries.While a Bloom
filter guarantees no false negatives, it may contain false pos-
itives, which means a tested element is either not in the set or
maybe in the set with a certain probability. By accepting that
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a portion of bits of the filter are falsely identified as part of the
set, the structuremakes it possible to represent datawith a sig-
nificantly shorter bit array. Thus, the data structure provides
the freedom to trade the accuracy of correctly identifying the
membership of an element with the filter size. This option for
lossy compression is an advantage of the Bloom filter over
similar data structures since we can use as little memory as
required while maintaining short computing time.

Bloom filters have been a constant subject of research
over the last decades, with many variants presented in lit-
erature (Kirsch and Mitzenmacher 2006; Christensen et al.
2010; Debnath et al. 2011; Chikhi and Rizk 2013; Luo et al.
2018). While Bloom originally developed the data structure
for spell-checking andword separation, today, there aremany
applications (Abdennebi and Kaya 2021). Nevertheless, the
data structure is most popular in database management. For
example, Apache Cassandra and PostgreSQL use Bloom
filters to reduce disk lookups for non-existent rows and
columns. However, the data structure is useful for a wide
variety of tasks and applied in network routing, traffic mea-
surement, and processing (Kumar et al. 2003; Broder and
Mitzenmacher 2004; Song et al. 2005; Nayak et al. 2021)
and network security (Geravand and Ahmadi 2013; Patgiri
et al. 2018) and bioinformatics (Melsted and Pritchard 2011;
Jackman et al. 2017).

Wewill now define the elementarymathematical concepts
of Bloom filters. Let B denote a Bloom filter, a bit array of
size m, to represent a set x ∈ X with n elements. An empty
Bloom filter represents an empty set with all elements set to
zero. Now, we chose k pairwise independent hash functions
hi , whichmap each element of the set x to k bitsb j in Bwhere
0 < k � m. These hash functions are non-cryptographic and
more efficient regarding computational time and resources
than cryptographic functions.Also, itmust be considered that
while the mapping is theoretically random, it is practically
deterministic since a dependence exists due to the nature of
randomization on computational hardware, which is always
bound to some seed. If an element of x is inserted into B,
the corresponding k bits b j are set to one. The mapping is
visualized in Fig. 1. Consequently, the fraction of zeros (foz)
describes the percentage of zeros of a filter:

foz =
(
1 − 1

m

)kn

≈ exp
−kn

m
(1)

and depends on the filter sizem, the number of hash functions
k, and the number of inserted elements n. Here, foz = 0.5 is
the desirable value for filters created fromX since it provides
the highest entropy for the bit string. Note that Eq.1 is not
statistically correct but gives a good intuition and holds for
reasonable large m. The effect of small bit arrays on the
fraction of zeros has been discussed in detail in previous
literature, such as in Mitzenmacher (2001).

Fig. 1 An example of the creation of a Bloom filter B with m = 8 and
k = 2, representing raster data x with 2 × 3 binary values: hi (x) = b j
where i = 1, ..., k and j = 1, ...,m

As previously mentioned, the data structure provides a
trade-off between the size m and the error probability. This
error probability only refers to one type of error: the false
positive (FP). The FP rate p of a Bloom filter configuration
is given by the following:

p =
(
1 − exp

−kn

m

)k

(2)

and describes that an FP happens if k random tests of an
element yield a one. Although the actual FP rate may be
higher in real applications (Gremillion 1982; Mullin 1983),
it has been theoretically proven that Eq.2 gives a lower bound
on the FP rate (Bose et al. 2008).

Further, we can find the minimum number of hash func-
tions k for an expectedFP rate p bydifferentiatingExpression
2 and finding the roots. Given a memory sizem and the num-
ber of elements to be inserted n, we can obtain the global
minimum of the FP rate with the following:

k∗ = m

n
ln 2. (3)

In this paper, k is constrained to be an integer number, so we
must round k∗.

Furthermore, the optimal number of bits b j , which is the
memory budget m∗, can be calculated for a target FP rate p
in a straight forward way:

m∗ = −n ln p

(ln 2)2
. (4)

Since the filter length m strongly affects the FP rate p, this
leads to the aforementioned trade-off between size and accu-
racy.
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2.2 Global binary maps

Based on the Bloom filter, we now discuss Global Binary
Maps (GloBiMaps), which was first presented in Werner
(2019a) and extended in Werner (2021). GloBiMaps effi-
ciently stores a binary raster into a global bit map and
offers possibilities for augmentations. The probabilistic data
structure was initially made to avoid costly disk lookups
when working with sparse, high-resolution, low-cardinality
raster data. A Bloom filter is the core of the data struc-
ture, where pixels are inserted by hashing with the Murmur3
hash function (Appleby 2008, 2016). Murmur3 is a general-
purpose, non-cryptographic hash function known for quality
distribution while maintaining high performance. Further,
GloBiMaps utilizes an advanced hashing method based on
Kirsch and Mitzenmacher (2006) and linear congruential
generators that allow the creation of multiple hash functions
with a single computation ofMurmur3. Therefore, the 128 bit
hash returned by the Murmur3 function is split into hlow and
hhigh with 64 bit each. Then, k independent and identically
distributed hash functions hi for a Bloom filter are created
with a single computation of Murmur3 by the following:

hi (x) = hlow(x) + ihhigh(x) mod 2m (5)

where i ∈ {1...k}. However, the process is only pseudo-
random, which means the generated numbers are interde-
pendent.

Although the modulo operation enables a computational
advantage, this also limits the data structure in this work to
the power of two sizes for m for Bloom filters. While this
may seem restrictive at first, the power of two filter sizes
allows the application of the following compression scheme.
By halving the filters and combining them with a binary OR
operation, the size of B is reduced tom/2, creating a pyramid-

like filter structure. The resulting bit array is equivalent to the
one that would have been created with the same set of hash
functions. However, we use a value of m/2 instead since the
modulo operationmaps the integer hash values into the index
range of the filter. Another advantage is that the computation
of mod 2m can be implemented without an actual division
since it is equivalent to the computation of a binaryANDwith
2m − 1. Thus, this implementation can significantly increase
the computational performance of the hashing procedure and
ensure uniform bit rates for the buckets of information.

Since only small-scale filters are used in this paper, an
example of the scalability of GloBiMaps and Bloom filters is
given here. In previous workWerner (2021), a low-resolution
version of the Global Urban Footprint (Esch et al. 2017) with
a size of 192, 857 × 462, 859 for a total of about 89, 256
gigapixels is used to demonstrate how GloBiMaps com-
presses image information. Figure2 shows two renderings
of Europe created by averaging 20 × 20 input pixels into a
single pixel value. It shows that amodulo-2 compressionwith
8megabyte, although noisy due to FPs, clearly represents the
structure of European urban regions. For compressions with
64 megabytes, errors are already rare and impossible for a
human to notice. GloBiMaps may also be augmented with
error correction tables modeling FPs, which could be consid-
ered for future work. However, this is not further discussed
in this paper, and instead, we refer toWerner (2021) for more
detailed information.

2.3 Hybrid quantum-classical systems for machine
learning

Within hybrid quantum-classical systems, quantum com-
puters can be used for small-scale machine learning tasks
with real-world data. By running subroutines on classical

Fig. 2 Example of GloBiMaps application from Werner (2019b): Urban regions over Europe by color-coding 20 × 20 pixel patches. a The 8
megabyte representation already has clear structures but is noisy due to the FPs. bWith a 64 megabyte representation, FPs are already rare
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hardware, modern quantum computers utilize parameterized
quantum circuits as a central part of machine learning mod-
els (Benedetti et al. 2019). Real-world data is transformed
on classical computers, which usually is a compression
before beingprocessedby theparameterizedquantumcircuit.
Finally, the retrieved output is classically post-processed.
Figure3 shows a generalized hybrid system for supervised
classification and outlines the interactions between classical
and quantumparts. Note that the output is a single valuewhen
simulating quantum circuits on classical hardware, while it
can be an expectation value on real quantum hardware.

In this paper, a parameterized quantum circuit Ûθ (x) is
built out of an encoding circuit Êx , which is parameterized
by the input x , and a variational circuit P̂θ , which is param-
eterized by a set of parameters θ , in form of

Ûθ (x) = P̂θ Êx . (6)

A circuit is built from a set of unitary transformations
{Ut (θt )},whichmayalso befixed insteadof parameterized, in
the form of Ûθ = Û

({Ut (θt )}
)= UT (θT )UT−1(θT−1)...U1

(θ1). The number of sequential transformations determines
the depth of the circuit. Now, the parameterized quantum cir-
cuit acts on the initial quantum state Ûθ (x)|0〉 = |ψ(x, θ)〉 to
produce a new state that can be measured to obtain an output.
The initial quantum state depends on the quantum computer
but is, in this work, assumed to be |0〉. An arbitrary quan-
tum circuit has a given width N , equivalent to the number of
involved qubits, which indicates the size of the qubit register.

Before mapping classical information to a quantum state
with a state preparation circuit, it is processed on classical
hardware and transformed to fit in the limited input domain
of the parameterized quantum circuit. Such transformation is
themain subject of this paper and is denoted in this remaining

section as φ. The concept of a randomized transformation
will be discussed in detail in Sect. 3.

The state preparation circuit is parameterized by the trans-
formed information in the form of Êφ(x), which is the
quantum encoding. There is a large variety of encodingmeth-
ods that have been studied extensively in previous work
(LaRose and Coyle 2020; Weigold et al. 2020, 2021a, b;
Schuld 2021; Ashhab 2022). However, an efficient quantum
encoding in terms of depth is, for example, basis encoding,
which only relies on state preparation circuits with depth
O(1). Assuming the initial quantum state is |0〉, for basis
encoding, a Pauli-X gate acts on the quantum state when the
input bit is 1, resulting in the new quantum state |1〉, in the
form of

X |0〉 = |1〉. (7)

If the input bit is 0, no Pauli-X gate is applied, and the initial
quantum state remains |0〉.

An efficient quantum encoding regarding the number of
qubits is, for example, amplitude encoding that requires at
least log2N qubits to encode a N -dimensional data point,
while basis and angle encoding need N qubits for the
same data point. However, the cost for amplitude encoding
shifts from the width to the depth of the state preparation
circuit. While most known encoding algorithms generally
require quantum circuits with a depth of O(N ) to load
N -dimensional vector data, recent work also showed that
it is possible to encode a N -dimensional vector using a
circuit with polylogarithmic depth and entangled informa-
tion in ancillary qubits (Araujo et al. 2021). In the case of
imagery, that is high-dimensional data, a well-known encod-
ing method similar to amplitude encoding is the so-called
flexible representation of quantum images where N pixels
are encoded using log2N + 1 qubits (Le et al. 2011). The

Fig. 3 A hybrid quantum-classical system for supervised classifica-
tion. Data is transformed on classical hardware before being processed
by a parameterized quantum circuit. The parameterized quantum cir-
cuit consists of a state preparation circuit, a unitary transformation that

implements the classification algorithm, and a measurement. Finally,
the output is mapped to the prediction, and parameters are updated on
classical hardware
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flexible representation of quantum images requires a state
preparation circuit depth polynomial in N , thus also shifting
the hardware requirements from the width to the depth of
the quantum circuit. Note that previous work addressed the
depth requirement of the flexible representation of quantum
images by using an approximate compressed representation
based on matrix product states and reduced the depth to
O(poly(χ)log2N ), where χ denotes the bond-dimension of
the matrix product states (Dilip et al. 2022).

Nevertheless, encoding methods like basis and angle
encoding are still the most efficient regarding the number of
operations and time with a depth ofO(1) for the state prepa-
ration circuit since they only require single-qubit rotations.
However, the disadvantage of such direct encoding methods
is that they require N qubits for N input vector components.
Consequently, regarding the choice for state preparation cir-
cuits, one must trade qubit register size with circuit depth
while maintaining a low enough complexity to be robust
against quantum noise.

Following the state preparation circuit, the unitary trans-
formation P̂θ is the variational circuit that implements
the algorithm on the quantum computer and processes the
quantum encoded data. Variational circuits P̂θ have shown
immense potential and are, besides quantum state prepara-
tion, one of the most studied fields when it comes to quantum
machine learning (Lu and Braunstein 2014; Farhi and Neven
2018; Havlíček et al. 2019; Adhikary et al. 2020; Li et al.
2022b). The measured quantum state is denoted by 〈Mx,θ 〉
and depends on the input x and some set of parameters θ .
Note that, in this work, the measurement will always refer to
a measurement in the computational basis. Following, with
Ûθ (x) = P̂θ Êx acting on the initial quantum state |0〉, we
get the following:

〈0|Û †
θ (x)MÛθ (x)|0〉 = 〈Mx,θ 〉 (8)

where themodel’s output 〈Mx,θ 〉 is themeasurement of oneor
multiple qubits of the quantumcircuit,which ismapped to the
model’s prediction ŷ. By denoting the unitary transformation
of the quantum state as Ûθ (φ(x)) |0〉 = |ψ (φ(x), θ)〉, we
get the following:

fθ
(
φ(x)

)= 〈ψ(
φ(x), θ

)|M |ψ(
φ(x), θ

)〉 (9)

which is the quantum machine learning model. Finally, the
model parameters θ are updated. The parameter update is
done by computing a loss function Lθ and an optimizer of
choice. Gradients with respect to the circuit parameters are
estimated following the parameter-shift rule (Mitarai et al.
2018; Schuld et al. 2019).

2.4 Ensemble learning

Ensemble learning is a powerful way to enhance machine
learning models, combining predictions from multiple base
models. With a collective decision according to a suitable
combination rule, the ensemble canperformsignificantly bet-
ter than the base models. As each base model is trained on a
subset of the data, they acquire distinct characteristics, mak-
ing the ensemblemore diverse and less error-prone. Diversity
plays a crucial role in improving the generalization perfor-
mance of an ensemble model. Each base model needs to
produce unique predictions, as models with differing predic-
tions aremore likely tomake dissimilar errors. Consequently,
the ensemble model’s overall error is reduced through the
inclusion of diverse base models.

Ensemble learning is a well-studied field, and previous
publications showed how it improves generalization and
helps to avoid overfitting and getting stuck in local optima
(Dietterich 2000; Zhang and Ma 2012; Sagi and Rokach
2018). Collective decision-making with ensembles has also
proven to be a powerful tool for improving quantummachine
learning approaches, and recently, extensive efforts have
been made to enhance quantum ensemble methods (Schuld
and Petruccione 2018; Macaluso et al. 2020; Niu and Ma
2023). Furthermore, quantum ensemble learning may enable
the usage of fewer qubits, which is particularly interesting
for the small-scale andnear-term intermediate-scale quantum
era (Incudini et al. 2023). Using less deep and complex mod-
els reduces the influence of noise in quantum hardware so
that ensembles ofweakmodels achieve superior performance
compared to larger and more complex models. Furthermore,
ensemble learning allows for more extensive dimensionality
reduction and lossy compression since the base classifiers can
have defects for certain instances and comparable low per-
formance. Thus, smaller qubit register sizes can be realized,
reducing the influence of quantum noise. Also, using fewer
qubits mitigates barren plateau effects, one of the major chal-
lenges for quantum machine learning (McClean et al. 2018;
Cerezo et al. 2021). Note that although ensemble learning
applies to various tasks, in the followingwork,wewill specif-
ically refer to classification for simplicity.

Bootstrap aggregating, or bagging, is an ensemble learn-
ing method particularly well suited for low-depth quantum
circuits (Incudini et al. 2023). A bagged model which takes
the mean over base models fc with c = 1, ...,C can be
denoted as follows:

fbag(x) = 1

C

C∑
1

fc(x). (10)

Although averaging is the straightforward method to com-
bine the model outputs, previous work indicates that a
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majority vote is superior for classical classifiers (Murphy
2022). For the majority vote, the class with the absolute
majority in the set of predicted classes, which means the
subset of predictions for that class is more than half the
total number of predictions, determines the final prediction.
Nevertheless, the final prediction ŷ for the true label y is a col-
lective decision of the base classifiers’ individual predictions
ŷc. Generally, bagging reduces variance and, thus, contradic-
tory to the related ensemble learning method boosting, helps
to avoid overfitting.

While an ensemble will have an identical bias to the base
classifier, it typically improves performance. The effect of the
collective decision on the performance of a classifier can be
easily shownby calculating the probability for an ensemble to
pick a class A in a binary classification task. Let yc = {A, B}
be the prediction of a base model fc with a known accuracy
a. The probability that the ensemble model picks class A is
as follows:

p =
|C2 |∑
c

C !
c!(C − c)!a

c(1 − a)C−c (11)

which is the cumulative distribution function of the binomial
distribution with parameters C , pc evaluated at C/2. For
instance, with a = 0.55, this results in p = 0.74 forC = 10,
p = 0.86 for C = 100, and p = 0.99 for C = 1000, which
illustrates the power of an ensemble of weak base classifiers.
In the context of Eq.11, we assume that individual classifiers,
labeled as fc, are diverse and generate independent errors,
even though practical scenarios may involve correlations.

3 Randomized data structure for quantum
state preparation

Following, we will introduce the concept of a randomized
data structure for quantum state preparation in detail. We
present how the preliminary discussed probabilistic data
structure and hybrid quantum-classical systems connect.
Next, we present a qualitative visualization of the impact of
the FP rate on the representation of imagery. Finally, we dis-
cuss how the proposed data encoding naturally fits ensemble
learning and how this improves a hybrid system’s compu-
tational efficiency and classification performance. Besides
introducing the concept, we motivate and formulate research
questions, which we will answer with several sets of numer-
ical simulations in Sect. 4.

The core of the randomized data structure is the Bloom
filter utilized by GloBiMaps, and the hashing of the values
incorporates the method shown in Eq.5. Thus, the input data
x ∈ X must be binarized and rasterized, which we generally
denote as g(x). Then, the binary raster created by g(x) can

be mapped to a Bloom filter B, which is a pseudo-random
bit string of a power of two sizes m, by k hash functions hi
in the form of

F
(
hi

(
g(x)

)):= 1 (12)

where i = 1, ..., k and x ∈ X . Here, equivalent to Bloom fil-
ters, all elements b j are initially set to 0, and then k elements
are set to 1 when information is inserted.

By controlling the parameters m and k, the data struc-
ture allows trading the representation size with the FP rate p
(Eq. 2). Thus, p can be viewed as an indicator of the qual-
ity of the representation or, the other way around, as the
amount of purposively induced noise. To get a more intuitive
view of the impact of p on the input, we present a qualita-
tive visualization of the decoded data structure. Although it
is theoretically impossible to invert the hash function hi and
reverse the randomization, it is practically possible to inverse
the mapping. There are two straightforward ways. First, with
a known input raster size and hash function, we can query
set membership for each pixel in the form of hi

(
Iones(a, b)

)
where Iones is a raster of ones. Second, by saving the indices
of binarized pixels g(I (a, b)) and the indices of b j while
mapping g

(
I (a, b)

) �→ b j , the hash functions hi may be
pseudo-inverted to retain the binary input value. Such an
inversion can be generally described as follows:

h−1
i (b j ) = g

(
I (a, b)

)∈ {0, 1} (13)

and results in an archetype for the input. While this is pos-
sible for every kind of input data, it is best illustrative and
convenient to understand in the case of images, as shown in
Fig. 4. For this example, we use imagery of handwritten dig-
its from Alpaydin and Kaynak (1998), initially introduced in
Fisher (1936) (for a description of the dataset, see Sect. 4.1).
It shows that the image can be error-free reconstructed from
the filter with a low FP rate as p = 0.02 (Fig. 4c). On the
other hand, for a high FP rate as p = 0.64 (Fig. 4f), the image
is highly disturbed by false positives. However, even with a
high error rate, since there can be no other error than an FP,
the original structure of the encoded information will always
be inside the image. Also, note that the FP pixels are not
the same for all examples due to the randomization during
hashing (Fig. 4 e, f). While this visualization gives an intu-
itive view of the influence of the FP rate, it can not reveal the
impact of the FP rate on the performance of an algorithm.
This induces our first research question: “How does the false
positive rate of a Bloom filter impact a model’s classification
performance?”

Since all encoded samples are presented with binary pre-
cision, we can now map each b j ∈ [0, 1] directly to the
quantum state with a state preparation circuit with a depth
O(1), consisting of single-qubit rotational gates. One of N
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Fig. 4 Qualitative visualization of the impact of the FP rate p of a Bloom filter on an image I (a, b). a Original image. b Binarized image. c–f
Archetypes from pseudo-inverted hash functions h−1

i (b j ) with varying filter configuration

qubits then represents one of m bits of classical information,
where N = m. Basis encoding with Pauli-X gates or angle
encoding with a single rotational gate of the set {Rx , Ry, Rz}
or any other suitable single-qubit operation may be used to
encode the input. Here, we chose basis encoding since it cre-
ates the best distinguishable quantum states. Following, the
mapping of the bits to quantum state can be described as
follows:

b j �→ |b j 〉 (14)

which results in an orthogonal computational basis state.
The quantum encoded data can then be processed by some
arbitrary parameterized quantum circuit Ûθ (B) with a qubit
register size N .

Regarding the number of inserted elements n and the fil-
ter size m, it must be clarified that filters with m < n lead
to unreasonable high FP rates. Thus, filters easily reach sizes
where basis encoding is not feasible anymore due to the lim-
itations of current quantum hardware since N = m when
reading the whole filter. One solution is to use only a frag-
ment of the array as input for the model, which involves a
loss of information. After generating the pseudo-random bit
arrays by hashing the input, a random choice of N bits b j

from B may represent the encoded input x . Note that any
selection of bits b j from B is practically a random selection.
Now, let B̂, which has N � m bits, denote a fragment, which
is a random subset of the encoded binary input data B. While
too much fragmentation would lead to insufficient features, a
low fragmentation could contribute to the generalization per-
formance of the model. Here, our second research question
arises: “Can we sufficiently represent real-world data with
fragments of randomized few-bit representations for classi-
fication?”

However, we can use even smaller fragments and further
reduce the width of the parameterized quantum circuit by
incorporating ensemble learning, where the pseudo-random
data structure manifests as a natural fit. In ensemble learning,
the training datasetX is commonly instanced such that every
base model fc learns from a random subset, which improves
the diversity of the classifiers, enhances generalization per-
formance, and helps to avoid overfitting. The proposed data
structure opens up the possibility that every model fc learns
from a fragment with N � m random bits from every
encoded sample in X . Hence, now, we consider base mod-
els fc(B̂c) with N qubits and trained with fragments B̂c.
The fragments are stratified, each consisting of a sequence
of N unique bits starting from the first element. Thus, we
can guarantee that every bit of the filter B was seen by at
least one model with fragments of size m/N while having
a practically random selection of bits from the transformed
input. Nonetheless, a higher number of classifiers improves
the ensemble’s performance, which can be achieved by over-
lapping the stratified fragments of the filter. Figure5 shows
exemplarily the proposed fragmentation of the transformed
input for an ensemble of 2m/N − 1 quantum classifiers. We
train weak classifiers fc with fragments of the encoded sam-
ples from the whole train set and build an ensemble model
fbag(B). The final prediction of the quantum ensemble is
then the collective decision fbag(B) = ybag (Sect. 2.4). This
leads to our third research question: “Does the fragmenta-
tion of a filter provide sufficient diversity for an ensemble
model?”

As described in the previous section (Sect. 2.4), quantum
ensembles enable less complex circuits and fewer qubits
while improving classification performance by collective
decision-making. While large ensembles are typically con-
nected to high compute times, in the case of the simulation
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Fig. 5 Transformation and fragmentation of an input x for an ensemble
of 2m/N−1 quantum classifiers with N = 4 qubits and basis encoding.
The binarized raster g(x) is mapped to a Bloom filter by hash functions

hi , and the stratified fragments B̂ are classified by base classifiers fθ .
We obtain the final output ŷbag according to a combination rule

of quantum circuits, our procedure improves the running
time. Since the computational cost of simulating qubits grows
exponentially with their number, an ensemble with a reduced
number of qubits takes less compute time than fewer circuits
with proportional more depth. Many less computationally
intensive simulations are also advantageous because they can
be easily parallelized on today’s classical processing units.

Last, we want to mention a possible, less obvious appli-
cation of the presented concept. Besides the advantages
mentioned in the previous sections, the randomized data
structure may be used for security and privacy in cloud
computing. This can be accomplished by replacing the non-
cryptographic Murmur3 hash function with a cryptographic
one, for example, from the secure hash algorithm (SHA) fam-
ily. A user could transform his data following the presented
concept and only transmit the randomized bit arrays. Thus,
no human-readable information would get to the operator of
the quantum hardware while still being able to fully process
the data. This can provide value if the available operators are
not trustworthy.

4 Numerical simulations

Wepresent numerical simulations to serve as proof of concept
and demonstrate the representation power of the proposed
data structure for application in quantum machine learn-
ing. More specifically, we answer the questions: “Can we
sufficiently represent real-world data with fragments of ran-
domized few-bit representations for classification?”, “How
does the false positive rate of a Bloom filter impact a model’s

classification performance?”, and “Does the fragmentation of
a filter provide sufficient diversity for an ensemble model?”.
We will describe the setup for the numerical simulations in
Sect. 4.1 and then discuss the results and answer the previ-
ously defined questions in Sect. 4.2.

4.1 Setup

We conduct numerical simulations with twowell-established
benchmark datasets: the handwritten digits dataset from
Alpaydin and Kaynak (1998), which was introduced in Xu
et al. (1992), and the Iris flower dataset from Fisher (1988),
which was introduced in Fisher (1936). The digits dataset
contains grayscale images of handwritten numeralswith 8×8
pixels. The Iris dataset contains plant features in the form of
four float values with one decimal place for each sample. It
has three classes where one class is linearly separable from
the other, and the others are not linearly separable. Regarding
the digits data, we chose classes one and five with 182 sam-
ples each for binary classification. For the sake of simplicity,
we binarize the imagery with a threshold where every pixel
value > 0 equals 1 to create binary representations for Glo-
BiMaps. Thus, the images are represented with 8× 8 binary
values. Regarding the Iris dataset, the two non-linearly sep-
arable classes with 50 samples each were chosen for binary
classification. One sample consists of four data points with
one decimal place value. To obtain binary representations
for the Iris dataset, we first multiply the decimal values of
each sample by 10 and thus obtain integers since they only
have a single decimal value. Then, we can map the integers
to seven-bit representations since all integers x ∈ [0, 128].
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Finally, the four features, with 7 bits each, are concatenated,
and we obtain a 4 × 7 binary representation for each sam-
ple of the Iris dataset. For both datasets, a train-test-split is
performed where 1/3 of the digits samples and 1/5 of the
Iris samples are used for testing. For binary classification, all
labels are converted to hinge labels y ∈ {−1, 1}.

As outlined in Sect. 3, we use the Murmur3 hash func-
tion to encode the binary representations into a Bloom filter.
Several filter configurations in terms ofmask sizem and num-
ber of hash functions k are evaluated. Note that filters with
m < n, where n is the number of bits of the input data, lead
to unreasonably high FP rates, so only filters with m > n
were considered in the numerical simulations.

We use basis encoding, outlined in Sect. 2, for the quan-
tum state preparation circuit because of its simplicity and
efficiency in terms of state preparation circuit architecture
and the excellent distinguishability of the generated quan-
tum states |0〉 and |1〉.

Two strongly entangled variational quantum circuit archi-
tectures and two classical approaches are considered for the
supervised classification of the encoded data in quantum
state. The quantum circuit architectures are based on previ-
ous work, namely the circuit-centric (CC) quantum classifier
(Schuld et al. 2020) (Fig. 6b) and a multi-scale entangle-
ment renormalization ansatz (MERA) (Vidal 2008) (Fig. 6a).
These circuit architectures were chosen since they are widely
accepted andused in literature andprovide an appropriate ref-
erence. Both quantum circuits have low depth and only a few
trainable parameters. In addition to the quantum models, we
consider two classical approaches, support vector machine
(SVM) and decision tree (DT), as a baseline comparison to
validate the representation power of the data encoding.

As described in Sect. 2.3, a computational basis measure-
ment is used to extract the label. Finally, we minimize the
squared hinge loss function with adaptive moment estima-
tion as the optimizer of choice. All quantum models train for
20 epochs with a learning rate of 0.01. The quantum circuits
are simulated on a classical CPU using Tensorflow-quantum
(Broughton et al. 2020). Due to the high number of low com-
plexity circuits with small qubit registers, training multiple
models in parallel is recommended, which we did with GNU
Parallel (Tange 2011).

We consider two approaches to classify the filters: a clas-
sifier trained on fragments of the train data samples and an
ensemble classifier where each classifier is trained on a dis-
tinct fragment of the train data samples. For the ensemble
learning approach, we chose 2m/N − 1 classifiers since this
ensures overlap (as visualized in Fig. 5) and gives an uneven
number of predictions ŷc. However, as demonstrated with
Eq.11, higher numbers of classifiers may further improve
the accuracy. Independent of the classification approach, the
size of the qubit register N equals the number of bits in B̂.
The ensemble learning approach follows classical bootstrap
aggregating outlined in Sect. 2.4.

4.2 Results and discussion

All given results show the mean of five repetitions with their
standard deviation. We conduct numerical simulations with
varying qubit register sizes (Table 1), varying numbers of
hash functions with a fixed filter size (Fig. 7), and varying
numbers of hash functions and filter sizes to evaluate the
impact of the FP rate (Figs. 8, 9).

Fig. 6 Variational quantum circuits P̂θ as classifiers. Circuit architectures include single-qubit rotations Ry(θ) = exp(−i θ
2Y ), controlled-NOT

operations (CNOT ), and a computational basis measurement. The figures were generated with QPIC (Draper and Kutin 2017)
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Table 1 Classification accuracy
on the test dataset with varying
qubit register size N for base
and ensemble (Ens.) models

Digits Iris
Quantum Classical Quantum Classical
CC MERA SVM DT CC MERA SVM DT

Base N=4 0.63 0.62±0.01 0.65 0.65 0.70±0.04 0.71±0.02 0.81 0.83

N=8 0.63±0.01 0.70±0.01 0.73 0.73 0.62±0.05 0.76±0.06 0.91 0.92

N=16 0.65±0.01 0.73±0.01 0.83 0.84 0.55±0.06 0.77±0.05 0.98 0.97

Ens N=4 0.9±0.01 0.9±0.03 0.93 0.93 0.93±0.05 0.94±0.03 0.94 0.95

N=8 0.85±0.01 0.93±0.01 0.93 0.93 0.78±0.11 0.91±0.04 1.0 0.95

N=16 0.72±0.02 0.88±0.01 0.93 0.94 0.55±0.12 0.9±0.09 1.0 0.97±0.02

Filter configurations: Digits, m = 64 and k = 1; Iris, m = 32 and k = 2. Abbreviations: CC circuit-
centric classifier, MERA multi-scale entanglement renormalization ansatz, SV M support vector machine,
DT decision tree

Tobeginwith,we justify our choice for one of the two rules
for collective decision-making described in Sect. 2.4: averag-
ing and majority vote. We found that the majority vote gave
better results since the magnitudes of the models’ outputs ŷ
are often close to the decision boundary and do not indicate a
specific certainty for the respective class. Thus, a single large
output may outweigh multiple small outputs during averag-
ing, which leads to a wrong result. Hence, the majority vote
was used for the collective decision for all ensembles in the
following numerical simulations.

Table 1 gives first insights into the representation power of
the randomized data transformation. The qubit register size
is set to N ∈ {4, 8, 16}, as N = 2 offers too few possibili-
ties and N = 32 is already too computationally intensive for
simulation on classic hardware. Depending on N , we split
the transformed data with m = 64 for the digits dataset and

m = 32 for the Iris dataset in 2m/N − 1 fragments for train-
ing and subsequent testing. We generally observe that, for
base classifiers fc(B̂), the classification accuracy on the test
set increases slightly with increasing N , both for quantum
and classical approaches. However, even the base classifiers
have a classification accuracy on the test set of around 65%
for qubit registers of size N ∈ {4, 8, 16}. Thus, we can
directly answer our first question “Can we sufficiently rep-
resent real-world data with fragments of randomized few-bit
representations for classification?” positively. The majority
of ensemble classifiers achieve accuracies of over 90%on the
test data set. The results show that an increasing number of
models has a stronger influence on the performance than an
increasing number of qubits. Note that this is not the case for
the classical ensembles built from SVMs or DTs, where the
classification accuracy on the test set slightly increases the

Fig. 7 The micro average of the F1 score and its standard devia-
tion for different numbers of hash functions k ∈ [1..25]. All models
learned from data in the form of N = 8 sized fragments of fil-

ters, and the visualized results are on the test set. Abbreviations: CC
circuit-centric classifier, MERAmulti-scale entanglement renormaliza-
tion ansatz, SVM support vector machine, DT decision tree
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Fig. 8 Classification accuracy on the test set for the digits dataset with
varying filter configurations and qubit register size. FP rates p for the
configurations from left to right: 0.64, 0.40, 0.14, 0.02. Abbreviations:

CC circuit-centric classifier, MERA multi-scale entanglement renor-
malization ansatz, SVM support vector machine, DT decision tree

larger N gets. In addition, the quantum ensembles generally
show a higher percentage improvement compared to base
classifiers than the two classical models. While the SVMs
and DTs generally show better performance than the quan-
tum machine learning models in most simulations, a direct
comparison of both approaches is not the aim of this paper.
However, we can verify the transformed data’s high expres-
siveness for both approaches and that the quantum models’
performance in such a limited setting with few trainable
parameters is promising.

Although the optimal number of hash functions k∗ can
be theoretically computed with Eq.3, the choice of k for the
optimal data representation for the classifiers is not obvious.
Since k∗ must be rounded to an integer value and the possi-
ble benefits of higher FP rates for the classifiers in terms of
better generalization performance and training data variety,

we present numerical simulations with k ∈ [1..25]. Figure7
shows results from a total of 250 trained quantum ensemble
models for each dataset, which amounts to 31750 base mod-
els for the digits dataset and 7750 base models for the Iris
dataset. Furthermore, the same amounts of classical models
were trained in the form of SVMs and DTs. A single hash
function leads to high sparsity,whichmeans almost emptyfil-
ters, and results in low F1 scores. The classifiers yield similar
performance with too-large k, which leads to an unreason-
able highFP rate.However, the performanceof the ensembles
stays relatively stable with over 0.8 F1 score for k ∈ [3..16]
for digits in Fig. 7a and k ∈ [4..13] for Iris data in Fig. 7b.
We can observe that the rounded k∗ does, for both datasets,
not equal the actual optimum for k. Also, in Fig. 7b, a sharp
drop can be seen at around k = 14, where the theoretically
calculated error rate is p > 0.5. Hence, the optimum number

123



Quantum Machine Intelligence             (2025) 7:22 Page 13 of 16    22 

Fig. 9 Classification accuracy on the test set for the Iris dataset with
varying filter configurations and qubit register size. FP rates p for the
filter configurations from left to right: 0.58, 0.34, 0.11, 0.01. Abbrevi-

ations: CC circuit-centric classifier, MERA multi-scale entanglement
renormalization ansatz, SVM support vector machine, DT decision tree

of hash functions should be treated as a hyperparameter and
tuned depending on the data and classifier to achieve the best
possible performance.

To answer the question “Does the fragmentation of a fil-
ter provide sufficient diversity for an ensemble model?”, we
present the following large sets of numerical simulationswith
fragmented bit arrays two times. First, with random sample
space (Figs. 8 a, c, 9 a, c),which is the fragmentation of the fil-
ter, and second with random sample space and random input
space, which is the additional selection of a random subset of
the training data (Figs. 8 b, d, 9 b, d). Here, the parameter m
was chosen to be as small as possible to emphasize the com-
pression ability of the data transformation, and k was chosen
close to the theoretically computed k∗ while providing an
expressive range of FP rates p. The comparison of random
sample space and random sample space with random input
space shows that the randomization induced by the data trans-

formation is sufficient to provide diversity for the ensembles’
base classifiers. Despite the additional randomization of the
dataset, which intuitively could have led to enhanced gener-
alizability, no improvement in classification accuracy on the
test set can be seen. However, the additional randomization
of the training subset increases the standard deviations of the
five repetitions, which can be seen in Figs. 8 b, d and 9 b, d
when compared to Figs. 8 a, c and 9 a, c.

Last, we want to answer “How does the false positive
rate of a Bloom filter impact a model’s classification perfor-
mance?” As previously discussed, Fig. 7 shows a decrease
in performance where the theoretically calculated FP rate
exceeds 0.5. Nevertheless, even with p = 0.64 (Fig. 8) and
p = 0.58 (Fig. 9), a classification accuracy of > 90% on the
test dataset can be realized with ensemble models in some
instances for N = 4, 8. As expected, a slight decrease in
classification accuracy on the test set with increasing filter
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size m can be seen for the base classifiers in Figs. 8a, c, 9a, c
as the part of the input seen by the classifier decreases with
increasing filter size m. However, even with only 4/512 of
the total bits as input, the base classifiers still have classifica-
tion accuracy around 60% on the test data. Further, it shows
that an error rate of p = 0.64 for digits and p = 0.58 for
Iris data is still viable for ensemble models, and multiple
ensembles result in > 90% classification accuracy on the
test set. Also notable, the difference in accuracy compared
to the difference in FP rates in Figs. 8 and 9 is surprisingly
low. One possible reason is that, since the only error is an FP,
the information, although noisy, is fully preserved. Overall,
this indicates that the FP rate can be used to improve the gen-
eralization of models by intentionally inducing noise in the
form of the FPs. The FP rate can, therefore, be set surpris-
ingly high while still achieving an acceptable classification
performance, enabling small filters and further emphasizing
the data structure’s compression capability.

5 Conclusion

We developed and presented a technique for representing
classical data for quantum state preparation based on Bloom
filters and input randomization. The key building block is
a pseudo-random bit array created by encoding binarized
raster datawith a non-cryptographic hash function. By allow-
ing some bits of the transformed data to be false positives,
the encoding enables trading the representation size with
the representation accuracy. This can be seen as intention-
ally induced noise and can be used to improve variety for
small training datasets and enhance the generalization perfor-
mance ofmodels. The bit array can be quantum encodedwith
basis encoding, resulting in well-distinguishable quantum
states.

The paper demonstrates how the fragmentation of the
transformed data, combined with ensemble learning, enables
the use of tiny quantum registers and state preparation cir-
cuits with a depth of O(1). With a series of simulations, we
show that the transformation is powerful in representing data
for quantum machine learning and naturally fits bootstrap
aggregation. The small, practically random fragments of the
transformed data are sufficient to train weak base classi-
fiers, and the fragmentation of the randomized data structure
provides the diversity needed to construct ensemble mod-
els, which often suffer from low variety in the training data
subsets.

Expressive small-scale representations of high-dimensional
data can be created that fit the input domain of current and
near-term quantum hardware by tuning the filter parame-
ters as additional model hyperparameters. The bit arrays are

suitable for low-depth state preparation circuits since they
rely only on a single quantum gate per bit to be encoded, and
the fragmentation of the bit arrays further reduces the needed
qubit register size. Thus, efficient parameterized quantum
circuits with small qubit registers can be utilized. Note that
quantumcircuit simulations also profit from the data transfor-
mation since the computing cost of simulating qubits grows
exponentially with their number, while the computing cost
grows linearly with additional base classifiers with the same
qubit register size.

This research contributes to the field of hybrid quantum-
classical systems, presenting a data transformation that
allows for low-depth and low-width parameterized quan-
tum circuits. We emphasize how the data structure utilizes
less complex circuits on quantum hardware, while quan-
tum ensembles can further reduce the needed qubit register
size while improving the classification performance. We see
potential in randomized data encodings for quantum com-
puting and propose further studies on lossy compression and
intentionally induced noise for quantum machine learning.
Novel data transformations for real-world data that allow effi-
cient state preparation circuits to be usedmay be an important
step towards a practical quantum advantage.
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