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Abstract
Existing quantum hardware is limited in the number of bits and length of the series of operations. Nevertheless, by shifting
parts of the computation on classical hardware, hybrid quantum-classical systems utilize quantum hardware for scaled-down
machine learning approaches, which is quantummachine learning. Due to the theoretically possible computational speed-up
of quantum computers compared to classical computers and the increasing volume and speed of data generated in earth
observation, attempts are now being made to use quantum computers for satellite image processing. However, satellite
imagery is too large and high dimensional, and transformations that reduce the dimensionality are necessary to fit the
classical data in the limited input domain of quantum circuits. This paper presents and compares several dimensionality
reduction techniques as part of hybrid quantum-classical systems to represent satellite images with up to 256 � 256 � 3
values with only 16 values. We evaluate the representations of two benchmark datasets with supervised classification by
four different quantum circuit architectures. We demonstrate the potential use of quantum machine learning for satellite
image classification and give a comprehensive overview of the impact of various satellite image representations on the
performance of quantum classifiers. It shows that autoencoder models are best suited to create small-scale representations,
outperforming commonly used methods such as principle component analysis.
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1 Introduction

The volume and velocity of globally generated data increase
continuously, particularly in the field of earth observation,
where the commercial space industry, smaller and cheaper
satellites, and advances in hardware facilitate the constant
stream of data. Now, researchers are trying to exploit new
hardware platforms to cope with the increasing process-
ing complexity. Similar to exploiting the power of parallel
processing of graphical processing units for deep neural
networks, the goal is to enable quantum computers for ma-
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chine learning tasks, which is quantum machine learning
(QML).

In contrast to classical computers, where bits can be in
one of the two binary states 0 and 1, quantum computers
exploit the so-called superposition of a quantum bit (qubit).
A single qubit in superposition is in the quantum states j0i
and j1i simultaneously, and together with the quantum me-
chanical concept of entanglement, this makes it possible to
follow different paths of computation at the same time [20].
A series of operations, also called gates, on qubits con-
nected by wires, which allow the states to travel between
operations, is known as a quantum circuit. Quantum cir-
cuits are generally the most similar quantum computational
models concerning classical computers. Implementing ma-
chine learning algorithms on quantum hardware by param-
eterizing gates in quantum circuits is possible, but adapting
classical concepts is difficult [2]. However, quantum com-
puting theoretically enables a so-called quantum advantage,
which describes a measurable computational speed-up in
comparison to classical algorithms [1]. If a practical quan-
tum advantage can be realized, QML may be a new way to
process the increasing amount of generated data in a rea-
sonable time.
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It must be clarified that large-scale fault-tolerant quan-
tum computers are still out of reach, and due to noise in
quantum hardware, only short sequences of operations and
a limited amount of qubits can be realized. Real-world data
and particular imagery are large and multidimensional, and
they must be transformed and reduced to fit in the lim-
ited input domain of parameterized quantum circuits. How-
ever, performing this preprocessing in addition to the actual
computation on the quantum hardware is impossible due
to the previously mentioned limitations. A workaround is
so-called hybrid quantum-classical systems, where subrou-
tines for pre- and postprocessing run on classical hardware
to reduce the requirements on quantum hardware [2]. Al-
ready today, hybrid quantum-classical systems have used
existing quantum hardware for scaled-down machine learn-
ing problems, and several successful attempts at classify-
ing computer vision datasets, like handwritten digits, with
hybrid systems were presented in the literature [2, 6, 12].
Due to the computational speed up that quantum computing
may offer [14] and recent advantages in the development
of quantum hardware in capacity and error correction [13],
the new research field of QML is growing vastly.

Nevertheless, even with increasing available qubits and
enhanced error correction, the input domain should be as
small as possible without impairing the classification per-
formance to save resources and counter noise. Furthermore,
dimensionality reduction is essential to create meaningful
features and supports classification [11]. Also, it reduces
the computational effort, counters the curse of dimension-
ality, and overfitting on the training data [3]. However, re-
cent publications where hybrid-quantum classical systems
are exploited for satellite image classification only cover
a single dimensionality reduction technique without com-
parison and do not further investigate the influence of the
data representation on the performance of the quantum clas-
sifier [8, 15, 21].

This article studies the influence of various small-scale
satellite image representations in QML. We propose a gen-
eral framework for hybrid quantum-classical systems and
evaluate and discuss various compositions of nine dimen-
sionality reduction techniques and four quantum classifiers
with supervised classification tasks from two datasets. Be-
sides comparing the performance of the quantum classi-
fiers with certain preliminary dimensionality reduction of
the input data, we conduct the experiments with an equally
limited classical machine learning approach, which serves
as a baseline. This article builds on and extends a previ-
ous publication [22]. With two additional circuit architec-
tures and a total of 770 models, we validate the indications
from [22] and give a comprehensive overview of the perfor-
mance of quantum classifiers with various small-scale satel-
lite image representations. Furthermore, we discuss both the
findings and their implications, focusing on the impact of

the chosen dimensionality reduction technique on the per-
formance of the quantum classifier. In general, we demon-
strate the potential of hybrid quantum-classical systems for
the classification of satellite imagery and show that autoen-
coder models are particularly well suited to creating small-
scale representations of the input data.

2 Background

This article considers several dimensionality reduction tech-
niques to create small-scale image representations, which
we outline in the following. Additionally, we present fun-
damental concepts and notation to understand the imple-
mented quantum classifiers.

Dimensionality reduction describes a reduction of data
in N -dimensional space to a K-dimensional latent space
where K � N while preserving information. First, down-
scaling (DS) with the local mean for a given array with
the integer factors of the image axis is a straightforward
approach. Next, we consider the well-known linear dimen-
sionality reduction methods principal component analysis
(PCA) and the closely related factor analysis (FA). PCA
projects the input on a lower dimensional space by singular
value decomposition to maximize the downsampled data’s
variance. Similarly to PCA, FA describes the data by ex-
plaining covariances and variances and representing them
as a set of factors. While FA is closely related to PCA,
particularly probabilistic PCA, it differs in the underlying
model, such that it presumes the conditional distribution of
the input x given the latent variable K to have a diagonal
rather than an isotropic covariance [3].

Further, unsupervised learning methods, known as au-
toencoder models, are considered. An encoder f and
a symmetric decoder g are trained together by minimiz-
ing the difference between the input x and the output
y = g.f .x// to learn a low-dimensional latent represen-
tation ex of size N , such that f .x/ = ex. Depending on
the model’s weights and bias, the reconstruction error is
the objective function and is minimized during training
by backpropagation. While autoencoder models typically
start the training process with random initial weights, pre-
trained restricted Boltzmann machines (RBMs) can provide
weights close to a good solution in advance [11]. RBMs
are two-layered neural networks that learn a probability
distribution to reconstruct the input. They connect binary
pixels in a visible layer containing the input data, with
feature detectors in a hidden layer. Those symmetric con-
nections are weighted, corresponding to the strength of
the connection between the visible variable and the hidden
variable. So, in contrast to autoencoder models, RBMs use
the same weights for the encoder and decoder layers.
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Now, we introduce parameterized quantum circuits
(PQCs), which realize the quantum classifiers. A quantum
circuit has a number of qubits and a series of operations
which act on the quantum states. Such operations are
called gates and perform rotations of qubits around the
Bloch sphere. Now, unitary operators U may depend on
a set of parameters � , which can be adapted for some tasks.
From a set fUi .�i /g, J unitaries build a parameterized
circuit

bU � = UJ .�J /UJ−1.�J−1/:::U1.�1/ (1)

which depends on �j = �J ; �J−1; :::; �2; �1 [7]. When a uni-
tary operator bU � acts on the initial quantum state j i, it
produces a new state j t.�/i = bU.fUi .�i /g/j t−1i where
the value of an observable quantity can be measured [2].
The superposition collapses when a circuit is measured and
an expectation value is obtained. A measurable observable
describes a Hermitian operatorM , which is one of the Pauli
matrices �x; �y; �z. The measurement of a PQC is denoted
by

hM i� = h jbU �

�
M bU � j i (2)

where � denotes the complex conjugate and hM i� is the
measured expectation value [16]. Note that the measure-
ment is a single value in the case of simulated quantum
circuits.

Now, let bU x;� = bU �
bU x be a PQC that consists of an

encoder circuit bU x and a variational circuit bU � . The en-
coder circuit bU x , also called the state preparation circuit,
is parameterized by the classical input data x and encodes it
in quantum state. Quantum encoding is necessary to process
classical data on a quantum computer and is a unique chal-
lenge for QML. Different algorithms can require different
encoding methods, and various methods exist to accomplish
quantum embedding [16]. In this paper, angle encoding and
basis encoding, which are efficient in terms of the depth of
the encoding circuit, are utilized and will be discussed in
Sect. 3. The second part of the PQC, the variational circuit
bU � , may have an arbitrary architecture adapted to some
task. The unitary gates Ui .�i / parameterized by �i act on
the input data in quantum state until the qubit is measured to
obtain hM ix;� depending on the input data x and the para-
meter set � . A circuit’s parameters � can be optimized for
a specific task by minimizing an error function equivalent
to classical machine learning models.

Now, given inputs x 2 X with labels y 2 Y , the de-
finition of a machine learning model f� .x/ = y, and the
definition for the measurement (Eq. 2), a PQC as a ma-
chine learning model is defined by

f� .x/ = h .x; �/jM j .x; �/i (3)

where the output of the model is the measurement of the
circuit [2, 16]. Here, j .x; �/i defines the state prepared by
bU x;� j0i. The measurement hM ix;� can then be interpreted
as the predicted label by for the input x and is further used
to compute a loss function L� depending on the parameters
� . The parameters are updated through stochastic gradient
descent in the form of

� − �rL�

�hM ix;� ; y
�

= �� (4)

where � is the learning rate.

3 Method

This section will outline the general framework for the hy-
brid quantum-classical systems and the methodology for
the experiments. We propose hybrid systems consisting of
classical dimensionality reduction, a PQC for classification,
and classical post-processing, which is the free parameters
� update by stochastic gradient descent (Fig. 1).

The classical pre-processing in this work can be gener-
ally described as a data transformation x 7! ex which maps
an input image x with N elements to a vector bx with
a latent dimension K such that K � N . Since the com-
putational cost of simulating quantum systems on classi-
cal hardware grows exponentially in the number of qubits,
and, for example, TTN and MERA architectures comprise
a power of two number of qubits, K = 16 was chosen
regarding the largest implementable qubit register size. Be-
sides downscaling and linear dimensionality reduction with
PCA and FA, we conduct non-linear dimensionality reduc-
tion with a convolutional autoencoder and an autoencoder
created from RBMs. In addition to the previously men-
tioned dimensionality reduction techniques, feature extrac-
tion with a very deep convolutional network with 16 layers
(VGG16) is considered [18]. It comprises 13 convolutional
layers with a kernel size of 3 � 3 and five maximum pool-
ing layers. A maximum pooling layer follows each stack
of convolutions to half the input size. The VGG16 is pre-
trained and implemented without the fully connected top
layers, which are usually for classification, to perform con-
volution and thus reduce the input images to fewer values
while creating new features. PCA, FA, an autoencoder with
dense layers, and an autoencoder created from RBMs are
combined with prior feature extraction by the pre-trained
VGG16. Consequently, we evaluate a total of nine methods
to obtain small-scale data representations.

We consider two quantum encoding methods that are
efficient regarding the depth of the encoding circuit: basis
and angle encoding. For basis encoding, we first binarize
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Fig. 1 Hybrid quantum-classical system scheme. The transformation x 7! ex maps the input images x to a vector representation ex such that it
fits in the input domain of the quantum circuit. The quantum part consists of the encoder circuit bU

ex
and the classification circuit bU � . The output

is the measured expectation value hM i
ex;�

which gets mapped to the prediction by to compute a loss function and update the parameter set � by
stochastic gradient descent

the transformed input data with its median. Then, bU
ex is

built from one X gate for every qubit qk with k = 1; :::; K
where exk = 1 such that the initial quantum state is changed
in the form of X j0i = j1i. Thus, every value xk of the
binary input vector is directly mapped to the quantum state
with a single operation xk 7! jxki. Basis encoding needs
one qubit for each value of the input vector but results in
a shallow encoding circuit with only a single X gate for
each qubit. In the case of angle encoding, all transformed
inputs ex are represented rescaled to 0 6 x 6 2� . Then,
each input value exk is encoded by applying a single-qubit
Pauli rotation from the set fRx; Ry ; Rzg around an axis
such that the angle of the rotation depends on the input
data value. Thus, one value of the input vector needs one
qubit to be encoded but has a shallow architecture with one
rotation gate. In general, after applying bU

ex , each qubit
qk stores one value of the quantum encoded image vector
j ki.

We consider four quantum circuit architectures for clas-
sification, which were previously presented in the literature
(Fig. 2) [7, 9, 17, 19], and are described in the follow-
ing paragraph. Recall that all quantum classifiers have
an input space of K = 16 data qubits qk , which store
the transformed and quantum encoded input data j ki.
Further, the PQCs as machine learning models (Eq. 3)
are shortly denoted as f� .ex/ = hM i

ex;� where hM i
ex;�

is the measurement, which is the prediction for the label
of the transformed input image ex. First, the Farhi cir-
cuit architecture (Fig. 2a) was inspired by [7] and already
showed promising results in previous work [15]. The circuit
has an additional 17th qubit, which is the readout qubit
jqr i. The readout qubit is prepared by a NOT gate X and
a Hadamard gate H followed by two-qubit paramterized
gates, which are 16 XX.�/ = e−i �

2 �X˝X Ising gates and

16 ZZ.�/ = e−i �
2 �Z˝Z Ising gates and act on the readout

qubit jqr i. The circuit has a depth of 35, assuming it uses
a simple Pauli-Z measurement and 32 free parameters. Fi-
nally, the readout qubit jqr i is measured to obtain an expec-
tation value. Second, a tree tensor architecture denoted by
TTN circuit (Fig. 2c), which was already applied on a stan-
dard computer vision dataset and resulted in high accu-
racy [9]. The circuit has 31 Ry.�i / gates, which are single-
qubit rotations around the Y -axis through an angle parame-
terized by � , and consequently 31 free parameters. Further-
more, the circuit consists of 8 controlled-NOT (CNOT) and
7 shifted CNOT gates. Since binary trees inspire the ar-
chitecture, half of the qubits are discarded after each set
of rotational and CNOT gates. The circuit has a depth of
9, assuming it uses a simple Pauli-Z measurement. Third,
a circuit-centric quantum classifier, proposed by [17] and
denoted by CC circuit (Fig. 2b). It consists of two blocks
with 16 parameterized rotations Rz.�i /, 16 Rx.�i /, and
16 CNOT gates each. The qubit jq0i is then acted on by
two additional rotation gates Rz.�i / and Rx.�i / and finally
measured to obtain an expectation value. The circuit has
a depth of > 39 with I = 66 free parameters. Last, a mul-
tiscale entanglement renormalization ansatz [19] for clas-
sification tasks (Fig. 2d). It has 43 parameterized rotation
gates Ry.�i /, 17 CNOT gates, and a depth of > 14.

The classical postprocessing consists of the mapping of
the measured expectation value hM i

ex;� to the predicted
class label by for the input x, which is the prediction of
the classifier. Further, the computation of a loss function
L� depending on the parameters � , which is given in case
of square hinge loss by

L�

�hM i
ex;� ; y

�

= max
�

0,1 − y � hM i
ex;�

�2
(5)
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a

c

b

d

Fig. 2 Parameterized quantum circuits for classification. The figures are made with hqjpici (https://github.com/qpic/qpic). a Farhi quantum clas-
sifier [7] with a depth > 34 and I = 32 free parameters �i . G and T are parameterized two-qubit Ising gates. Here, G denotes XX.�i / and T
denotes parametric ZZ.�i / which act on jqr i, b Circuit centric (CC) quantum classifier [17] with a depth > 38 and I = 66 free parameters �i .
G and T are parameterized one-qubit quantum gates. G denotes Rz.�i / and T denotes Rx.�i /. For the CNOT gates, the control qubit is drawn
in black, c Tree tensor network (TTN) quantum classifier [9] with a depth > 9 and I = 31 free parameters �i . G is a parameterized single-qubit
quantum gate and denotes Ry.�i /. For the CNOT gates, the control qubit is drawn in black, d Multiscale entanglement renormalization ansatz
(MERA) quantum classifier [19] with a depth > 14 and I = 43 free parameters �i . G is a parameterized single-qubit quantum gate and denotes
Ry.�i /. For the CNOT gates, the control qubit is drawn in black

with y 2 Œ−1,1�. The parameter set is then updated via
classical stochastic gradient descent.

We implement the experiments with the Tensorflow-
quantum [4] framework in combination with cirq1 and

1 https://github.com/quantumlib/Cirq.

simulate the quantum systems on classical hardware. All
experiments with hybrid systems include two publicly avail-
able real-world image datasets: EuroSAT [10] and NWPU-
RESISC45 [5]. EuroSAT consists of 27000 Sentinal-2
satellite images with 10 land use and land cover classes.
A single image has a size of 64 � 64 pixels with a ten-
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a b

c d

Fig. 3 Example results for binary classification of EuroSAT [10]. Average accuracy (a,c) and average loss (b,d) and their standard deviation over
five runs are displayed. Bold values indicate the best performance. a Accuracy for AnnualCrop and SeaLake, b Loss for AnnualCrop and SeaLake,
c Accuracy for PermanentCrop and Industrial, d Loss for PermanentCrop and Industrial

meter resolution. The Northwestern Polytechnical Univer-
sity created the second dataset for remote sensing image
scene classification. It has 45 balanced classes and is titled
NWPU-RESISC45. A single image has a size of 256� 256
pixels with a varying resolution from 0.2 meters to 30. In
contrast to the EuroSAT dataset, RESISC45 has high diver-
sity within one class in terms of, for example, translation,
viewpoint, and background. We train all models for 50
epochs besides the VGG16, which uses weights obtained
from pre-training on the ImageNet dataset. To minimize
the loss function, the optimizer of choice is Adaptive Mo-
ment Estimation with a learning rate of 0.001. Besides
the hybrid systems, we present a simple classical machine
learning model with two fully connected layers and 37
free parameters. While this is, in the first place, not to

compare quantum to classical approaches, it shall validate
the usability of the lower dimensional features and serve as
a baseline to evaluate the dimensionality reduction meth-
ods. However, since the quantum classifiers are limited in
the number of gates, we equally limited the classical model
to get a fitting baseline.

Finally, with nine dimensionality reduction techniques
and four circuit architectures, we get 36 hybrid systems.
We choose two binary classification tasks for each dataset
and train every model five times to ensure the experiments’
reproducibility, resulting in 720 models. Additional, five
one-versus-rest models are trained with the EuroSAT data,
which makes an additional 50 models.
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a b

c d

Fig. 4 Example results for binary classification of NWPU-RESISC45 [5]. Average accuracy (a,c) and average loss (b,d) and their standard devia-
tion over five runs are displayed. Bold values indicate the best performance. a Accuracy for meadow and desert, b Loss for meadow and desert, c
Accuracy for tennis court and airplane, c Loss for tennis court and airplane

The code to reproduce the experiments is published in
an open code repository2.

4 Results and Discussion

We perform three sets of experiments to evaluate the data
representations for classification with hybrid quantum-clas-
sical systems. First, we perform a grid search to find a suit-
able configuration for the classifiers’ loss function, quan-
tum encoding, and quantum observable. Second, we train
the classifiers with all dimensionality reduction methods to
compare their performance dependent on the different data

2 https://github.com/tum-bgd/sirfqc.

representations. Third, we conduct a multiclass approach
with the most promising hybrid system.

To begin with, we conduct the grid search with imagery
transformed by a simple autoencoder built from two dense
layers. The grid search shows that, for basis encoding, due
to the binarization of the transformed input ex and the addi-
tional loss of information, no suitable data representations
can be obtained when mapping to only 16 values. Further-
more, note that the impact of the chosen loss function on
the classification performance was low. Although the differ-
ences between the suitable configurations regarding the ro-
tation for angle encoding and the quantum observable were
small overall, following the grid search results, all hybrid
systems are trained with a combination of X-angle embed-
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ding, Pauli-X observable, and square hinge loss function in
the following experiments.

Next, we evaluate and compare the nine approaches
for transforming and reducing satellite imagery. For both
EuroSAT classification tasks (Fig. 3), hybrid systems,
including a VGG16 for prior feature extraction and an
autoencoder model to create a low dimensional code of the
input data, show the best overall results for the quantum
classifiers. For binary classification of the classes Annu-
alCrop and SeaLake, all hybrid systems, including the
VGG16 and an autoencoder, resulted in a mean classifica-
tion accuracy of > 90%. On the other hand, the classical
dense layer classification approach shows lower accuracy
when trained with a VGG16 and an autoencoder than for
other pre-processing methods.

Furthermore, it shows that convolutional autoencoder
models are best suited for classification tasks from the
RESISC45 dataset. (Fig. 4). While prior feature extraction
with the pre-trained VGG16 enhanced the classification ac-
curacy on the EuroSAT data, it did not improve the classi-
fication of the RESISC45 data. Similar to the results with
the EuroSAT data, the classical dense layer approach shows
the overall best results not with the same pre-processing as
the quantum approaches but with PCA.

Overall, the Farhi classifier outperforms the other ar-
chitectures. Here, it must be noted that the TTN, CC, and
MERA classifiers only use simple one-qubit quantum gates,
while Farhi includes Ising gates, which are tensor products
of Pauli-Z and Pauli-X gates and act on two qubits. Ad-
ditionally, MERA has low depth and thus may outperform
deeper architectures on real quantum hardware with noise.

The hybrid systems generally reach similar accuracies
but far higher loss values than the limited classical classifi-
cation approach with the same pre-processing method. This
is due to the magnitude of the output by of the quantum
classifier being close to the classifier’s decision boundary,
which, while maintaining high accuracy, also leads to high
hinge loss values (Eq. 5).

Furthermore, we conduct a one-versus-rest approach on
multiclass classification, where we train a binary classifier
for each class in the dataset. Then, every classifier predicts
every sample in the test set, and the model that outputs
the highest value for by determines the predicted class.
For the EuroSAT dataset, the binary one-versus-rest classi-
fiers generally reach accuracies of about 90% independent
of the class. However, the model outputs are no probabil-
ities, which means that the magnitudes of the outputs are
not reasonably comparable. For example, a prediction for
some sample fA.x/ � 0.83 of model A does not ensure
that the prediction fB.x/ � 0.21 of model B for the same
sample is less certain to be right. Nevertheless, feature ex-
traction with a VGG16 and an autoencoder for dimension-
ality reduction in combination with the Farhi circuit results

in a mean overall accuracy of > 50%. Presumably, due to
larger images and number of classes, multiclass classifica-
tion of the RESISC45 dataset resulted in noticeably lower
scores.

As previously mentioned, all models were trained over
30 epochs. However, it showed that loss and accuracy did
not significantly change after the third epoch when training
one-versus-rest classifiers with the whole dataset. Note that
this was not the case for a one-versus-rest approach with
a classical classifier and quantum classifiers, which were
trained on subsets of the dataset consisting of two classes.

5 Conclusion

In this article, we propose hybrid quantum-classical systems
to classify satellite imagery and evaluate various small-scale
representations of the input data. Due to the current limi-
tations of quantum hardware, we perform pre- and post-
processing classical and classification with PQCs. To fit the
imagery in the limited input domain of the quantum circuits,
we transform and reduce the data with up to 256� 256� 3
values to 16 values. We benchmark and compare nine di-
mensionality reduction methods to create representations
of the input data combined with four PQC architectures for
classification. The experiments demonstrate that small-scale
representations of satellite imagery are suitable for classifi-
cation with hybrid quantum-classical systems. Further, we
show how the chosen data transformation influences the
classification performance. Often-used dimensionality re-
duction techniques like PCA perform worse than autoen-
coder methods for certain tasks, and prior feature extrac-
tion can, in some instances, further enhance the results. In
summary, the findings imply that even small-scale quan-
tum systems have potential use for real-world application
when implemented with suitable dimensionality reduction
techniques.

Since we observe that the magnitudes of the one-ver-
sus-rest classifier outputs are not reasonably comparable,
a possible approach for multiclass classification is to ex-
ploit probability calibration. Furthermore, after having in-
sights on the data representations and circuit architectures,
enhancing the training procedure with new optimizers and
loss functions is a possible follow-up for this paper.

In fact, due to the limitations of quantum hardware, QML
is currently not ready to compete with classical machine
learning. Still, research like this creates a scientific foun-
dation for when it might become possible. Furthermore,
even with enhanced noise reduction and error correction,
data transformations like the proposed methods will remain
relevant since they can improve feature representation, re-
duce the computational effort, and counter noise in quan-
tum hardware by reducing the size of the required qubit
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registers. Thus, transforming and reducing input data and
extracting meaningful features are and will be fundamental
for QML.
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8. Gawron P, Lewiński S (2020) Multi-spectral image classification
with quantum neural network. In: IGARSS. IEEE, pp 3513–3516

9. Grant E, Benedetti M, Cao S et al (2018) Hierarchical quantum
classifiers. NPJ Quantum Inf 4(1):1–8

10. Helber P, Bischke B, Dengel A et al (2018) Introducing eurosat:
a novel dataset and deep learning benchmark for land use and land
cover classification. In: IGARSS, pp 204–207 https://doi.org/10.
1109/IGARSS.2018.8519248

11. Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality
of data with neural networks. Science 313(5786):504–507. https://
doi.org/10.1126/science.1127647

12. Kerenidis I, Luongo A (2020) Classification of the mnist data set
with quantum slow feature analysis. Phys Rev, A. https://doi.org/
10.1103/PhysRevA.101.062327

13. de Leon NP, Itoh KM, Kim D et al (2021) Materials challenges and
opportunities for quantum computing hardware. Science. https://
doi.org/10.1126/science.abb2823

14. Liu Y, Arunachalam S, Temme K (2021) A rigorous and ro-
bust quantum speed-up in supervised machine learning. Nat Phys
17(9):1013–1017. https://doi.org/10.1038/s41567-021-01287-z

15. Otgonbaatar S, Datcu M (2021) Classification of remote sensing
images with parameterized quantum gates. IEEE Geosci Remote
Sens Lett 19:1–5. https://doi.org/10.1109/LGRS.2021.3108014

16. Schuld M, Petruccione F (2021) Machine learning with quantum
computers. Springer

17. Schuld M, Bocharov A, Svore KM et al (2020) Circuit-centric
quantum classifiers. Phys Rev, A 101(3):32308

18. Simonyan K, Zisserman A (2015) Very deep convolutional net-
works for large-scale image recognition, pp 1409–1556

19. Vidal G (2008) Class of quantum many-body states that can
be efficiently simulated. Phys Rev Lett. https://doi.org/10.1103/
physrevlett.101.110501

20. Werner M (2017) Quantum spatial computing. SIGSPATIAL Spe-
cial 11(2):26–33

21. Zaidenberg DA, Sebastianelli A, Spiller D (2021) Advantages and
bottlenecks of quantum machine learning for remote sensing. In:
International Geoscience and Remote Sensing Symposium. IEEE,
pp 5680–5683

22. Zollner JM (2022) Quantum classifiers for remote sensing. In: Pro-
ceedings of the 30th International Conference on Advances in Ge-
ographic Information Systems. ACM, SIGSPATIA, https://doi.org/
10.1145/3557915.3565537

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

K

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/jproc.2017.2675998
https://doi.org/10.1109/IGARSS.2018.8519248
https://doi.org/10.1109/IGARSS.2018.8519248
https://doi.org/10.1126/science.1127647
https://doi.org/10.1126/science.1127647
https://doi.org/10.1103/PhysRevA.101.062327
https://doi.org/10.1103/PhysRevA.101.062327
https://doi.org/10.1126/science.abb2823
https://doi.org/10.1126/science.abb2823
https://doi.org/10.1038/s41567-021-01287-z
https://doi.org/10.1109/LGRS.2021.3108014
https://doi.org/10.1103/physrevlett.101.110501
https://doi.org/10.1103/physrevlett.101.110501
https://doi.org/10.1145/3557915.3565537
https://doi.org/10.1145/3557915.3565537

	Satellite Image Representations for Quantum Classifiers
	Abstract
	Introduction
	Background
	Method
	Results and Discussion
	Conclusion
	References


