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A B S T R A C T

NanoSIMS technique allows to investigate the micro-spatial organization in complex structures in multiple sci-
entific fields such as material science, cosmochemistry, and biogeochemistry. In soil biogeochemistry applica-
tions, NanoSIMS-based approaches aim to disentangle the interactions of organic matter (OM) and mineral 
phases in the heterogeneous soil microstructure. Investigating the spatial arrangement of distinct organic and 
mineral functional components is necessary to understand how these components interact and contribute to 
biogeochemical processes in soil systems. Identifying soil functional components within NanoSIMS measure-
ments necessitates advanced and efficient data processing tools capable of accessibility and automation. We have 
developed a pre-processing tool to streamline NanoSIMS data preparation and handling. The tool is provided as 
an open-source software toolbox (NanoT). In addition, a two-step unsupervised segmentation method was 
developed to identify soil functional components based on NanoSIMS analyses. To illustrate the segmentation 
method, here we describe its application to two exemplary NanoSIMS measurements. This allows to distinguish 
mineral- and OM-dominated regions, as well as different mineral phases. To improve the detection of iron oxides 
and aluminosilicates, the 56Fe16O− channel was separately processed. The presented NanoSIMS-based processing 
workflow helps to disentangle functional components within a biogeochemically-diverse microstructure in soils 
and further warrants applications to a wide range of complex environmental samples.

1. Introduction

Nanoscale secondary ion mass spectrometry (NanoSIMS) is an im-
aging technique providing the spatial distribution of elements and iso-
topes at a submicron spatial resolution (~50–150 nm) of environmental, 
cosmic, and synthetic solid samples. In cosmochemistry, NanoSIMS 
offered information on the composition of presolar grains and lunar 
samples, and further on the deduction of the origin of presolar grains by 
spatial characterization of deuterium and oxygen isotopes (Barnes et al., 
2013; Hoppe et al., 2013; McKeegan et al., 2006). NanoSIMS in material 
science was used to measure the composition of microstructural features 
in alloys, semiconductor devices or other samples (Li et al., 2020; 
Pedrazzini et al., 2018). NanoSIMS and isotopic techniques enable the 
visualization of environmental microorganisms involved in biological 
processes such as nitrogen fixation or the microbial transformation of 
specific organic compounds in the soil, providing insights into nutrient 
exchange within the plant root-microbe-soil interaction. (Brunet et al., 

2022; Nuñez et al., 2018; Pett-Ridge and Weber, 2022). In soil science, 
NanoSIMS is applied to resolve the spatial heterogeneity of soil micro-
structures and investigate organic matter dynamics, mineral composi-
tion and their interactions by analyzing the spatial arrangement of 
diverse functional components at a high resolution (Mueller et al., 
2023). These functional components include plant-derived and 
microbial-derived organic matter (OM) and mineral particles like sili-
cates, oxides, carbonates, sulfides, and other compositions that interact, 
providing an intricate soil structure with diverse biogeochemical 
composition at the microscales (Kleber et al., 2021; Solomon et al., 
2012; Wan et al., 2007). The allocation of different functional soil 
components, i.e., clay minerals, pedogenic oxides, or OM, locally pro-
vides biogeochemical interfaces that influence the function of soils in the 
ecosystem (Heckman et al., 2018; Rasmussen et al., 2018). Using sec-
ondary ion signatures and stable isotope labels, such as 13C, 15N, 29Si, or 
57Fe, several groups have been able to identify the spatial arrangements 
of soil OM and minerals and to better understand biogeochemical cycles 
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at the microscale (Amelung et al., 2023; Hao et al., 2020; Hoppe et al., 
2013; Remusat et al., 2012). Analyzing soil structures at the microscale 
has been requested by several authors to obtain further information on 
the heterogeneous composition of morphological, mechanical, and 
biological properties in order to improve our understanding of soil 
structure changes, microbial activities and other soil processes (Baveye 
et al., 2018, 2019; Pot et al., 2022). In addition to studying soil micro-
structures by NanoSIMS, further techniques with lower resolution such 
as computed tomography (Houston et al., 2017; Portell et al., 2018) and 
energy-dispersive X-ray spectroscopy (Allegretta et al., 2022; Hapca 
et al., 2015), or at finer resolution such as scanning transmission X-ray 
microscopy (Lehmann et al., 2008) and electron energy loss spectros-
copy (Possinger et al., 2020), complement our understanding of 
biogeochemical processes in heterogeneous soil structures.

With increasing applications and the generation of larger datasets by 
NanoSIMS, challenges of data processing and data-driven identification 
of functional components became more critical. Various spatial analysis 
software tools were specially designed for NanoSIMS data processing, 
such as the open-source and multiplatform software tools OpenMIMS 
(Gormanns et al., 2012) on Fiji ImageJ, Look@NanoSIMS (Polerecky 
et al., 2012) on the MATLAB platform, as well as L’Image (L. R. Nittler, 
Carnegie Institution of Washington) and WinImage (CAMECA), which 
are both proprietary software. Most of the existing software tools lack 
further automation due to the manual operation. With the increasing 
amount of NanoSIMS data and image-based interpretations, fulfilling 
the ‘FAIR’ principles, the findability, accessibility, interoperability, and 
reusability of the data, becomes more crucial (Wilkinson et al., 2016).

The application of data-based image processing methods can help to 
distinguish the functional components from the microstructure images 
based on image datasets under different research aims, for instance, 
threshold models, supervised pixel classification and unsupervised seg-
mentation methods. Threshold methods have been applied for the 
analysis of soil structure (Baveye et al., 2010; Hapca et al., 2013; 
Houston et al., 2013). For NanoSIMS measurements, an improved local 
Otsu’s thresholding method identified soil organic particles on 12C− , 
13C− and 56Fe16O− ion channels (Hao et al., 2020). Another threshold 
method, called Canny edge detection, generates a binarization mask and 
was described as a morphological segmentation (Renslow et al., 2016). 
Since soil components differ in multiple elemental compositions, 
threshold methods can be limited in identifying more than two com-
ponents in soil microstructures.

To disentangle the microstructure of soil, an increasing number of 
machine-learning-based approaches provide novel opportunities. These 
approaches encompass both supervised and unsupervised learning, with 
supervised classification being predominantly applied in several studies. 
Building on this trend, Steffens et al. (2017) adapted methods from 
remote sensing to investigate functional components in soil, applying a 
pixel classification method based on the spatial-spectral endmember 
extraction and the spectral angle mapper algorithm. However, for 
further applications using spectral endmember extraction, the amount of 
different functional components and the required amount of reference 
materials can be quite large and difficult to define due to the spatially 
heterogeneous transformation. Other approaches of pixel classification 
based on a machine-learning algorithm used a segmentation toolkit 
called ilastik (Berg et al., 2019). This provides the possibility to segment 
background, mineral- and OM-dominated regions which was used to 
quantify microspatial patterns related to OM dynamics over time or 
quantify the co-location of OM with pedogenic oxides (Inagaki et al., 
2020, 2023; Schweizer et al., 2018; Wilhelm et al., 2022). This approach 
enabled the identification of similar functional components from the 
same dataset that are partially needed for training the classifiers. 
However, such an approach provides a limited applicability to detect 
similar functional components in other datasets. This impedes the pos-
sibility to process larger datasets and derive a general understanding 
across a diverse range of soil samples.

Automated and unsupervised learning method like K-Means 

clustering was applied to NanoSIMS measurements for P distribution 
and their co-occurring with Al and Fe (Werner et al., 2017). K-Means 
clustering is optimized for identifying groups with convex shapes where 
no interior angle exceeds 180 degree. It may produce different results 
when applied to data containing reflex interior angles, known as non- 
convex polygons. In the context of soil microstructure images, this 
means that some functional components may be assigned into incorrect 
clusters when interior angles are present (Mitra et al., 2003). Beyond 
NanoSIMS data processing, unsupervised segmentation methods were 
applied to tomography measurements of soil structure to analyze pore 
morphology (Chauhan et al., 2016; Malik et al., 2022). In addition, 
deep-learning methods have been applied in digital soil mapping to 
analyze plot-scale gradients of soil properties and provide further pos-
sibilities to enhance NanoSIMS data analysis (Wadoux et al., 2020).

Although previous methodologies have proven valuable for Nano-
SIMS data pre-processing and image analysis, further automation, 
accessibility of data processing tools, and implementation of data-driven 
approaches are warranted. Thus, our study aims to provide a NanoSIMS 
processing toolbox with automated pre-processing and data-driven 
segmentation to streamline the identification of functional compo-
nents in soil microstructures (Fig. 1), such as OM and mineral phases. A 
better understanding of the soil microstructure promotes further insights 
of organic matter dynamics and other soil processes.

2. Pre-processing methodology

2.1. NanoSIMS measurements of soil science case study data

The NanoSIMS 50 L (CAMECA) is equipped with one positive and 
one negative primary ion source, namely Cs+ and O− primary ion beams, 
and up to 7 secondary ions can be measured simultaneously (Herrmann 
et al., 2007). By bombarding the surface of a solid sample by primary 
ions at an energy of 16 keV, most elements are detected as secondary 
ions measured by the mass spectrometer unit (Nuñez et al., 2018; Wil-
son, 1995).

To illustrate the steps of our proposed image processing scheme, two 
NanoSIMS measurements done on soil particles from Ap (0–10 cm) 
horizon of Podzol in Lohne were chosen as a case study, whose organic 
carbon was around 22.6 mg⋅g− 1. Detailed information of the soil can be 
found in Urbanski et al. (2022). Prior to the NanoSIMS measurement, 
particles of a soil fine fraction <20 μm were suspended in deionized 
water, deposited on GaAs wafers, and were let to dry in a desiccator. 
Regions of interest for subsequent NanoSIMS measurements were 
identified using Scanning Electron Microscope images to locate areas on 
the wafer containing organic and mineral components. Two NanoSIMS 
measurements were conducted using the Cs+ primary source and to 
measure seven ion channels, namely 16O− , 12C12C− , 12C14N− , 28Si− , 
31P− , 27Al16O− , and 56Fe16O− , chosen to detect the organic matter and 
the minerals. These two measurements utilized 256 × 256 pixels ar-
ranged in rows and columns for a field of view of 30 μm × 30 μm, with a 
dwell time of 1 ms per pixel and involved 30 repeated scans.

2.2. Fundamentals of the preprocessing

The raw NanoSIMS data have the shape of N× N× M× S, where N 
represents the number of columns and rows, M denotes the number of 
ion channels, and S is the number of scans for each ion channel. Nano-
SIMS data are essentially a two-dimensional raster, wherein each raster 
cell gives the abundance of ions across the analyzed area. Usually, 
multiple scans are conducted for individual measurements to enhance 
counting statistics. This results in S slices for each ion channel. The raw 
NanoSIMS data are typically acquired in the Indexed Mesh (IM) format. 
By default, IM files are accompanied by an additional information file 
called CHK_IM, which contains metadata.

In the following, the pre-processing procedure for NanoSIMS data is 
presented. The raw data processing was split into seven sequential steps: 
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import, dead-time correction, raster correction, alignment, sum image 
creation, and export a simplified visualization of the pre-processing 
scheme is presented in Fig. 2.

In the first step of our procedure, the raw data were imported. 
Metadata on the measurement and various technical aspects, including 
the motor positions and NanoSIMS calibration, were extracted from the 
header of the IM files. The second step corrected the NanoSIMS mea-
surements for the dead-time, which is the time frame after each detec-
tion of an ion signal where the system cannot record another event. 
Although the dead-time may vary between 20 and 84 ns (Nuñez et al., 
2018), the standard practice is to use 44 ns. Nevertheless, the exact 
dead-time can be extracted from the header of an IM file. It is possible to 
account for the dead-time of each detector separately, if further accuracy 
is needed. The dead-time was corrected using a linear correction model: 

Ccor =
Craw

(1 − τ × Craw)

where Craw is the raw counts of secondary ions, Ccor is the corrected 

counts, and τ is the detector’s dead time in ns (Nuñez et al., 2018). Third, 
the raster for each scan was corrected. In case the first column and row 
are incorrectly designated as the last column and row, they are re- 
assigned. Note that the column is corrected first followed by the row, 
and all scans must be processed in the same way. Next, the scans were 
aligned, which is also known as image registration, since the NanoSIMS 
ion beam might drift between scans, due to environmental factors such 
as temperature fluctuations and vibrations during the measurement. The 
alignment enables to increase the sharpness of imaged features when 
summing up scans subsequently. The algorithm implemented here by 
Thevenaz et al. (1998), is widely applied for example in medicine 
(Badimon et al., 2020) and biology (Haruwaka et al., 2019), and also 
used in the software tool OpenMIMS (Gormanns et al., 2012). Here, one 
mass with distinct boundaries across the whole field of view, such as 
oxygen, is used as a reference and then the resulting transformation is 
applied to all other ion channels and slices. Following, the slices can be 
accumulated by summing up the aligned scans of each ion channel. 
Finally, the data had the shape N× N× M and was exported in a file 

Fig. 1. NanoSIMS data processing scheme. The blue boxes represent the data types, the green blocks list the data processing methods, and the purposes of our 
method are in the purple blocks. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. A simplified visualization of the pre-processing of raw NanoSIMS data with N = 10 rows and columns, M = 2 measured masses, and S = 3 scans. Imported 
data has the shape of N× N× M× S, for which the scans are summed up to provide a two-dimensional map for each mass as N× N× M. The last row and column are 
corrected by shifting from panel b to c, and the drift of different scans are aligned in the last scan from c to d.
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format of choice.

2.3. Discussion of the pre-processing

The labor and time requirements of the necessary pre-processing of 
NanoSIMS data result in a fragmentation, that is datasets isolated to 
individual projects containing a limited number of measurements. 
Although, numerous studies have applied NanoSIMS, the fragmentation, 
diverse pre-processing methods, and diverse file formats limit the 
analysis across larger datasets from different studies. Regarding data 
formats, NanoSIMS data is often saved as Tagged Image File (TIF) and 
Nearly Raw Raster Data (NRRD) in addition to the raw data in IM 
format. Hence, integrating large datasets into automated workflows can 
result in redundancy and compatibility challenges. However, the anal-
ysis of larger datasets across various studies holds the potential to obtain 
a more comprehensive understanding of how spatial patterns of similar 
structures evolve in different ecosystems. The dynamic evolution of 
NanoSIMS applications in different fields increasingly requires a stan-
dardized pre-processing scheme and a data format characterized by both 
robust computational performance and enduring usability.

To streamline the pre-processing procedure and simplify batch pro-
cessing of NanoSIMS data, we introduce a novel open-source software 
tool: the TUM NanoSIMS Toolbox (NanoT, https://go.tum.de/122733). 
NanoT extends existing software tools as presented in (Nuñez et al., 
2018) by enabling automatic processing to efficiently handle large 
NanoSIMS datasets. The toolbox enables the processing scheme pre-
sented in Section 2.2 and the generic file format, the Hierarchical Data 
Format (HDF). The HDF data format can store extensive N-dimensional 
data and associated metadata within a singular file accessible by various 
platforms (Folk et al., 2011). These features might be advantageous for 
batch-processing of large NanoSIMS datasets. The toolbox aims to pro-
mote the findability, accessibility, interoperability, and reusability by 
providing open-source and user friendly automatable processing algo-
rithms for NanoSIMS data in accordance with the FAIR protocol 
(Wilkinson et al., 2016). Future work regarding NanoT is the adaption of 
methodologies from remote sensing, such as feature engineering, 
denoising, segmentation, and classification (Zhang and Zhang, 2022), as 
well as novel image registration methods from medical imaging for 
non-rigid structures (Haskins et al., 2020) for NanoSIMS image 
processing.

3. Unsupervised segmentation

To identify functional components constituting soil microstructure, 
here we present an automatic segmentation on the pre-processed 
NanoSIMS data using a two-step unsupervised clustering method. 
When measurements of reference materials for the training of classifiers 
are unavailable, data-driven methods such as the presented one provide 
an automated segmentation through clustering.

3.1. Data normalization

Due to the diverse range of ion counts across the seven measured 
masses, a normalization is needed to facilitate the comparison of indi-
vidual ion channels. To avoid changing the shape of the original dis-
tribution (Cabello-Solorzano et al., 2023), a Min-Max normalization is 
applied to scale the signal from 0 to 1 in individual channels, calculated 
by: 

xnorm = (x − xmin)/(xmax − xmin)

Where x is the initial pixel count from one ion channel, while xmin and 
xmax are the minimum and maximum signal counts of the ion channel 
over the whole dataset (cell 10 and 11 in the R code of supplementary 
material).

3.2. First step of the unsupervised segmentation: K-means clustering

To identify functional components with similar ion compositions, we 
conducted a two-step unsupervised segmentation method first starting 
with K-Means clustering. Since the NanoSIMS measurements for this 
method explanation are on GaAs wafers, we use the ion channels: 
12C12C− , 12C14N− , and 16O− to distinguish mineral-dominated and OM- 
dominated regions. Pixels with high 16O− counts were defined as 
mineral-dominated regions, while OM-dominated regions were 
composed of pixels with high 12C12C− and low 12C14N− and 16O− . Pores 
and background were indicated by pixels with low 12C12C− , 12C14N− and 
16O− .

The pre-defined number of clusters for K-Means clustering (K-num-
ber) determines the performance of the segmentation result and was 
estimated by the first selection for this unsupervised segmentation 
method. This is because that K-Means clustering assigns pixels to the 
corresponding K-number of centroids, which is the center point of a 
cluster, and the movement of centroids terminates at the closest 
Euclidean distances between the pixels and the centroid (Ikotun et al., 
2023; Macqueen, 1967; Nainggolan et al., 2019). The K-number pro-
vides the opportunity to obtain a number of data-driven clusters that can 
help to capture the multiple elemental compositions of organic and 
mineral components in the soil microstructures. This leads to the esti-
mation of K-number by data-driven tools such as the elbow method. The 
elbow method calculates the total Within Sum of Square for an 
increasing number of clusters and provides the most favorable K-number 
at the elbow point, where the significant decrease in values of two 
clusters occurs (Demidenko, 2018; Guyeux et al., 2019; Nainggolan 
et al., 2019). However, the elbow point is hard to recognize from the 
elbow plot (in Fig. 3 (b)) and probably does not contribute to any 
explainable segments. Meanwhile, as in NanoSIMS measurements, the 
shapes of functional components are always irregular polygons with at 
least one reflex interior angle, which is called non-convex polygons. K- 
Means clustering is not the most supportive method for dealing with 
non-convex polygons. Therefore, the segmentation strategy changes for 
NanoSIMS data by increasing the K-number for overfitting results and 
sending the overfitted clusters to the second step for regrouping.

To optimize the segmentation, the K-number is first defined by the 
elbow method and set for the overfitting clusters as 70 (the K-number 
range in the elbow plot from 1 to 70; Cell15 in R code). Then, K-Means 
clustering, conducted by the “Lloyd” algorithm (Lloyd, 1982) with the 
70 centroids, presents the preliminary clusters with highly similar ion 
counts (Cell 18 in R code).

3.3. Second step of the unsupervised segmentation: re-grouping of clusters

To solve the overfitting preliminary clusters and merge the clusters 
with similar mass signatures, re-grouping serves as the second step of 
this unsupervised segmentation using Hierarchical Agglomerative 
Clustering (HAC). The concept of HAC starts from each cluster centroid 
and then iteratively merges the closest clusters until one cluster contains 
all clusters (Davidson and Ravi, 2005; Kaufman and Rousseeuw, 1990). 
Thus, two selections for HAC are placed, linkage method selection for 
the similarity of clusters of the optimal re-grouping determination and 
gap statistic for optimal number for the final segmentation.

Four different linkage methods for HAC determine which clusters 
can be merged by computing their Euclidean distances. “Single” linkage 
is the smallest dissimilarity and “complete” linkage is the largest 
dissimilarity between two clusters. “Average” linkage calculates the 
average of the dissimilarities, while “ward’s” linkage aims to minimize 
the sum of squares of distances within each cluster (Table S1). To 
determine the optimal linkage method, the agglomerative coefficient is 
introduced to evaluate the strength of the clustering structure (Kaufman 
and Rousseeuw, 1990; Pandove et al., 2019; cell 20 in R code). A high 
agglomerative coefficient indicates the most robust hierarchical tree 
structure (Fig. 3 (h)). We used the centroid values from previous K- 
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Fig. 3. Unsupervised segmentation working scheme on 16O− , 12C12C− and 12C14N− channels in NanoSIMS measurements. (a) the pre-processed image data with 16O−

(red), 12C12C− (green) and 12C14N− (blue). (b) the elbow plot exhibits the total Within Sum of Square (WSS) with K-numbers ranging from 1 to 70. (c) preliminary 
unsupervised segmentation results with the K-number as 70. (d) Mean values of preliminary 70 K-clusters. (e) The gap statistic plot exhibits the optimal final 
clustering number selection from 1 to 12. (f) final unsupervised segmentation results with 3 clusters, labels of these 3 clusters derived from (g). (g) Mean values of 3 
final clusters, each curve representing the K-clusters. (h) the hierarchical tree being cut into 3 final clusters according to (e). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)
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clusters as the base tree branches and the tree was formed based on the 
“ward’s” linkage method (Cell 20 in R code). To cut the hierarchical tree 
into the optimal final clusters, the determination optimal number is 
determined using the Gap Statistic (Tibshirani et al., 2001). The Gap 
Statistic provides a null reference distribution and identifies as the 
smallest clustering number with the largest gap between its null refer-
ence which is similar to but advanced compared with the elbow method 
(Yang et al., 2020; Fig. 3 (b); cell 21 and 22 in R code). Based on this 
clustering number for re-grouping, the hierarchical tree is segmented 
into respective sections (Fig. 3 (h)), and the resulting clusters are sub-
sequently assigned to their corresponding pixels (Fig. 3 (f)).

After the selection and re-grouping of K-Means clusters, the final 
segmentation shows three different segments: Cluster 1 with high 
12C12C− and 12C14N− counts resembling OM-dominated regions, Cluster 
2 with low ion counts in 12C12C− , 12C14N− and 16O− channels resembling 
the background, and Cluster 3 with high 16O− counts resembling 
mineral-dominated regions.

3.4. Unsupervised segmentation for highly skewed ion distribution

Here a second exemplary application of an unsupervised segmenta-
tion is provided to identify different soil mineral phases and gain further 

information on how these are related with OM. To distinguish mineral 
phases, an altered two-step segmentation of the regions left after the 
exclusion of the regions identified as pore and background improved. 
Then the 28Si− , 27Al16O− , and 56Fe16O− distributions were used to 
distinguish the major mineral phases. The distribution of 56Fe16O−

counts was relatively more skewed than other ion channels. This was 
evaluated by the skewness, which represents the difference between the 
medium and mean counts of pixels within channels, and the z-score, as 
related to the skewness standardized to the mean skewness of all 
channels (Fig. 4a and Fig. S1, Joanes and Gill, 1998; Milligan and 
Cooper, 1988). This led to an unreliable segmentation result (Fig. 4c) 
which cannot reflect the 56Fe16O− channel in its corresponding position 
(Fig. 4a). Together with the mean value curves in Fig. 4d, the 56Fe16O−

channel was not the primary factor for this segmentation. To improve 
the detection of Fe-rich phases, a separate second step HAC on the 
56Fe16O− channel was conducted, and the second step HAC of 28Si− , 
27Al16O− channels were conducted together. This separated HAC points 
out with high and low 56Fe16O− , and 28Si− and 27Al16O− segments 
(Fig. S2). By combining the two separated segments, a clear difference 
from Fig. 4c to 4e emerges where a part of Al-Si-Fe-dominated regions 
were assigned to high-count aluminosilicates. According to the mean 
value of ion counts curves (Fig. 4f), the high 56Fe16O− points out the 

Fig. 4. Unsupervised segmentation for highly skewed 56Fe16O− . (a) Comparison of the skewness across seven ion channels (histograms shown in Fig. S1), which 
indicates that the 56Fe16O− channel has a much higher skewness than other channels. The z-score in the top row indicates the difference to the mean skewness 
divided by the standard deviation. (b) visualization on 56Fe16O− channel after contrast enhancement. (c) unsupervised segmentation results of 16O− , 28Si− , 27Al16O− , 
and 56Fe16O− channels and the mean value of these 3 regrouped segments. (d) the joint result of unsupervised segmentation results of 56Fe16O− channel (Fig. S2(c)) 
and of 16O− , 28Si− , 27Al16O− channels (Fig. S1(e)) representing the relative occurrence of 56Fe16O− with 28Si− and 27Al16O− channels, and the mean value of 4 joint 
regrouped segments.
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distribution of iron hotspots surround by clay minerals containing low 
56Fe16O− . The integrated result of the OM- and mineral-dominated re-
gions with specific mineral phases in Fig. 5 indicates the potential co- 
occurrence of Fe-rich aluminosilicates and aluminosilicates with OM- 
dominated regions.

3.5. Discussion on the unsupervised segmentation

Our automated unsupervised segmentation method aimed to 
distinguish mineral and organic components adapted to the character-
istics of its NanoSIMS measurements, which are relatively large pixel 
data for multiple images and complex soil elements distributions. The 
composition of a soil sample is related to a number of factors, including 
parent material and the pedogenic transformation of mineral and 
organic components providing an intricate soil microstructure for which 
resolving the individual functional components can help to advance our 
understanding of biogeochemical cycles. To resolve the complex soil 
structure, here we took advantage of an unsupervised learning approach 
to differentiate OM- and mineral-dominated regions using a data-driven 
approach without the need for pre-defined components and references. 
Since our method is automated data-driven, it does not require experi-
ence on the visual identification of soil component structures to train the 
classifier. This avoids the multi-platform operation and the time to train 
a well-performed classifier compared with the supervised classification 
in Schweizer et al. (2018). Moreover, compared with only K-Means 
clustering, our method considered the influence of non-convex polygons 
on segmentation results and decreased this influence by regrouping the 
overfitted clusters (Mitra et al., 2003).

Due to the weakness of K-Means clustering, “regroup” is introduced 
to form this two-step unsupervised clustering method as the key concept. 
By comparing the 1st overfitting clusters with each other and grouping 
closely related clusters, one 2nd cluster would be regrouped. The com-
bination of partition and hierarchical clustering techniques with the 
“regroup” connection could excel in performance and yield favorable 
outcomes when non-convex polygons occur. The order of applying K- 
Means clustering and HAC is irreversible; if K-Means clustering pre-
cedes, it eliminates the influence of non-convex polygons by the over-
fitting K-clusters, whereas if HAC is implemented first, it struggles with 
processing a substantial number of pixels. Consequently, the first K- 
Means clustering is conducted with a self-defined clustering number 
based on the operating central processing unit, ranging from 50 to 100 
according to the elbow method (Sapegin et al., 2015). This two-step 
unsupervised clustering method is capable of identifying functional 
soil components according to its elemental signatures as illustrated 
using two soil NanoSIMS measurement.

To further improve our segmentation method, the ion ratios could be 
considered as supplementary parameters in HAC. The C/N ratio 
(12C− /12C14N) is widely used in NanoSIMS data analysis, to characterize 
the composition of organic matter (Hatton et al., 2012). Later, the 
normalized CN/C ratio (12C14N− /(12C14N− + 12C− )) was used to identify 
more N-rich regions of OM patches (Schweizer et al., 2018). Here we 
implemented the 12C14N− /(12C14N− + 12C− ) ratio of OM-dominated 
regions in Fig. S2(a). Simultaneously, isotope ratios could also be 
included in the supplementary parameters if useful to differentiate 
functional components, e.g. the 15N/14N ratio (Boiteau et al., 2020; 
Herrmann et al., 2007) and 13C/12C ratio (Boiteau et al., 2020). In 
addition, apart from C/O, N/O and C/N ratios, Si/Al, Si/O, Fe/Si, Fe/Al 
ratios could be used used to distinguish Al-rich from Si-rich phyllosili-
cates phases and pedogenic metal oxides as applied previously (Kölbl 
et al., 2017; Li et al., 2016; Steffens et al., 2017). A normalized mean-
ingful ratio calculated in ‘channel A / (channel A + channel B)’ might 
lead to a more precise and promising extension of the presented seg-
mentation approach. Additionally, when the soil samples are embedded 
in resin, it could be used to segment the resin-filled pores in order to 
analyze exclusively the embedded soil structures.

The presented two-step unsupervised segmentation method provides 

an applicable approach when the measurements of reference materials 
are unavailable. When the measurements of reference materials are 
accessible, other machine learning approaches, such as supervised 
classification and deep learning (O’Shea and Nash, 2015; Ronneberger 
et al., 2015; Winterfeldt and Edwards, 1986), may provide an improved 
segmentation. This would then allow identify specific mineral phases 
and OM compounds, to further improve our understanding of the local 
role of functional soil components at the micro-scale.

4. Conclusion

In this paper, fundamental methods for the automated processing of 
NanoSIMS measurements were presented. We present the open-source 
software NanoT, an automated tool to streamline data pre-processing 
and improve data accessibility. By implementing pre-processing fea-
tures ranging from dead-time correction to alignment, large amounts of 
NanoSIMS data can be rapidly analyzed and evaluated. The tool is 
openly accessible, enabling a growing number of NanoSIMS applications 
to process their data at no cost, with the potential of future extensions, 
such as different segmentation algorithms. In addition, we provide a 
data-based segmentation pipeline to identify functional components of 
soil that are challenging to pre-define beforehand. The unsupervised 
segmentation approach offers automated segmentation results for in-
vestigations based on different ion mass signatures, enabling analyses of 
the co-localization of individual ions with other channels. For this, we 
provide a way to incorporate highly skewed data distributions and 
successfully identify 56Fe16O− and aluminosilicates hotspots. Alto-
gether, the presented NanoSIMS processing scheme provides the op-
portunity to be transferred to other environmental matrics from 
cosmochemistry, material science, and biology applications. Apart from 
NanoSIMS measurements, our unsupervised approach could also be 
applied as a tool towards better understanding spatial patterns and the 
local interactions of functional components based on data from other 
techniques.
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