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A B S T R A C T
Nature disasters play a key role in shaping human-urban infrastructure interactions, Effective and
efficient response to natural disasters is essential for building resilience and sustainable urban
environment. Two types of information are usually the most necessary and difficult to gather in disaster
response. The first information is about the disaster damage perception, which shows how badly people
think that urban infrastructure has been damaged. The second information is geolocation awareness,
which means how people’s whereabouts are made available. In this paper, we proposed a novel disaster
mapping framework, namely CVDisaster, aiming at simultaneously addressing geolocalization and
damage perception estimation using cross-view Street-View Imagery (SVI) and Very High-Resolution
satellite imagery. CVDisaster consists of two cross-view models, where CVDisaster-Geoloc refers
to a cross-view geolocalization model based on a contrastive learning objective with a Siamese
ConvNeXt image encoder and CVDisaster-Est is a cross-view classification model based on a Couple
Global Context Vision Transformer (CGCViT). Taking Hurrican IAN as a case study, we evaluate the
CVDisaster framework by creating a novel cross-view dataset (CVIAN) and conducting extensive
experiments. As a result, We show that CVDisaster can achieve highly competitive performance
(over 80% for geolocalization and 75% for damage perception estimation) with even limited fine-
tuning efforts, which largely motivates future cross-view models and applications within a broader
GeoAI research community. The data and code are publicly available at: https://github.com/tum-
bgd/CVDisaster.

1. Introduction
Given the fast development in Remote Sensing (RS)

technology, the availability of large-scale and high-quality
Earth observation (EO) data has significantly benefited
timely humanitarian responses to natural disasters (Van Westen,
2000; Dong and Shan, 2013; Li et al., 2023a). Meanwhile,
recently, Street View imagery (SVI) has gained significant
momentum in urban studies and computer vision in the
last few years (Zhang et al., 2018, 2019; Biljecki and Ito,
2021), and has shown great potential in complementing
traditional satellite imagery analysis by providing a unique
and informative cross-view perspective on the ground (Zhu
et al., 2022).

In a disaster mapping scenario, two types of information
are critical for timely and accurate disaster response and
relief. The first type of information is the disaster damage
perception, which refers to the ways in which individuals and
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groups evaluate, subjectivize, and perceive damages to the
urban built environment due to the disaster. This information
is usually estimated from RS data based on expert knowledge
and intensive manual efforts. The second type of information
is geolocation awareness, which is basically how accurately
people can geographically locate themselves on the map.
By combining both information, an ideal disaster mapping
framework is able to simultaneously estimate human percep-
tion of the damage levels and provide accurate geolocations
in the affected areas.

However, it is not a trivial task to build such a framework
due to two major challenges: on the one hand, traditional
RS data can become insufficient for fine-grained damage
perceptions, especially for distinct and sophisticated urban
contexts, where a potential solution is to combine satellite
imagery with the emerging source of SVIs to ensure a
more fine-grained and cross-view of urban disaster dam-
age perception. On the other hand, existing geolocalization
approaches are often not satisfying, because they predomi-
nantly depend on satellite navigation systems, such as GPS,
Galileo, and BeiDou, which typically lack the appropriate
accuracy required for disaster response. Meanwhile, urban
context and weather conditions can bring another dimension
of complexity where satellite signals are blocked. Fortu-
nately, we have enough ingredients to address the latter
challenge as cross-view geolocalization with satellite and
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Figure 1: An overview of the proposed framework for Cross-view Geolocalization and Disaster mapping with street-view and
satellite imagery, namely CVDisaster.

street-view imagery offers a sensible alternative. Herein, this
technique can match real-time SVI obtained from carriers
against a collection of satellite imagery with known geolo-
cations so that the geographical coordinates of SVI can be
decided. To the best of our knowledge, there is no such
disaster mapping framework exists that can achieve damage
perception and cross-view geolocalization at the same time.

In this paper, we fill the aforementioned research gap by
developing a novel disaster mapping framework - CVDisas-
ter - (see Figure 1). Specifically, our framework addresses
the damage perception estimation and cross-view geolocal-
ization at the same time by leveraging the head-view satellite
and street-view imagery using state-of-the-art Geospatial
Artificial Intelligence (GeoAI) models. To validate the pro-
posed framework, we conducted a case study in Sanibel
Island, Florida, which was hit by Hurricane Ian in 2022.
Intensive experiments show the great potential of CVDisas-
ter in providing timely damage perception and geolocation
awareness with competitive accuracy, leading to substantial
advantages for future disaster response applications. More-
over, we made the case study dataset (i.e., CVIAN) openly
available to encourage related research in both computer
vision and disaster mapping communities.

In Section 2, we give an overview of related works re-
garding state-of-the-art disaster mapping, street-view image-
based urban analysis, and cross-view geolocalization, re-
spectively. In Section 3, we elaborate on the detailed method-
ology design of the proposed framework, ranging from the
problem statement to the training and inferencing of both
geolocalization and damage perception estimation models.
Next, Section 4 shows the experimental results from the case
study of Hurricane IAN and summarizes the key findings,
followed by Section 5 presenting a critical reflection of
limitations and identifying future works. Last but not least,

Section 6 concludes the paper by highlighting the scientific
contributions to a broader community.

2. Related Work
2.1. GeoAI for Disaster Mapping and Localization

Disaster mapping refers to the capability for even non-
profession to assist in disaster response situations via map-
ping and other spatial analysis (Herfort et al., 2021; Li et al.,
2022). The concept of disaster mapping has been success-
fully used to support disaster response and humanitarian
aid activities, especially under a disaster scenario, where
successful examples include the mapping tasks during the
2017 Hurrican Harvey (Feng et al., 2020), the 2019 Cyclone
Idai and Kenneth in Mozambique (Li et al., 2020), and the
2023 Turkey Syria Earthquake (Wikipedia, 2023). However,
considering the time-crucial nature of disaster responses and
humanitarian aid, traditional disaster mapping workflows
become less efficient and unsatisfactory in covering a large-
scale area and providing timely damage assessment within
a rather short time. In this context, the emergence of high-
resolution satellite imagery allows for faster and better dis-
aster mapping with GeoAI techniques (Salcedo-Sanz et al.,
2020; Werner and Li, 2022), thus providing a promising
solution to address this challenge that local stakeholders
currently encounter. Early works in this direction (Herfort
et al., 2019; Huck et al., 2021) report an interesting finding
on improving the speed and accuracy of disaster mappings
via a machine-assisted manner. In the meantime, there is a
stream of GeoAI research focusing on extracting accurate
location information during disasters, mainly from social
media text data (e.g., Twitter) (Kumar and Singh, 2019; Hu
and Wang, 2020; Mihunov et al., 2020; Hu et al., 2022,
2023b). One famous example is the news article published
in the U.S. National Public Radio, titled “Facebook, Twitter
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Replace 911 Calls For Stranded In Houston”, which reported
how affected people by Hurricane Harvey in 2017 used
social media to share their location and asked for help, which
significantly helps the rescue team to locate and reach those
people in need. One can find a comprehensive survey on
location reference recognition in Hu et al. (2023a).

However, a majority of existing disaster mapping and
localization approaches either rely on post-disaster satellite
imagery analysis for damage assessment or use geoparsing
tools to georeference a social media text. Therefore, there
is a pressing need for an intelligent disaster mapping and
geolocalization solution, ideally within a single framework.
To the best of our knowledge, CVDisaster is the first such
integrated framework that can achieve large-scale damage
perception and cross-view geolocalization at the same time.
2.2. Street-view Imagery for Urban Analytics

Due to its emerging availability, SVI has become a
crucial data source for urban studies. Diakakis et al. (2017)
conducted a comprehensive review of the applications of
SVI in urban research, highlighting its growing significance
in urban analysis. Their study indicates that most urban
research utilizing SVI relies on Google SVI (GSVI). How-
ever, crowdsourced platforms like Mapillary and KartaView
are also rapidly evolving and becoming key tools in urban
research.

In urban analysis, SVI is extensively applied across vari-
ous fields, such as the maintenance of spatial data infrastruc-
ture, studies of urban morphology and perception, and traffic
flow analysis. For instance, Kim et al. (2020) and Li et al.
(2023b) inferred urban features based on SVI to generate
3D urban models. Krylov et al. (2018) effectively detected
utility poles and traffic signals using GSVI, demonstrating
the unique efficacy of SVI in identifying streetlights and
traffic signs. In urban morphology analysis, many scholars
have estimated urban geometric indicators using SVI to
study microclimates and light pollution. Hu et al. (2020) and
Cicchino et al. (2020) extracted road variables from SVI to
analyze the safety of walking and cycling in urban areas.

Researchers also used SVI to extract information about
human health and well-being. By matching participants’
movement trajectories with SVI, one can analyze the envi-
ronmental features residents encounter in their daily activi-
ties, providing robust data support for public health policy-
making. For example, Nguyen et al. (2018) investigated
GSVI to extract derived indicators such as street greenery,
crosswalks, and building types to describe the built environ-
ment at the postal code level in three US cities. The study
found a correlation between community characteristics and
the prevalence of obesity and diabetes. In addition to these
key indicators, Keralis et al. (2020) demonstrated that
factors such as overhead visible wires and whether roads
are single-lane are associated with various health outcomes,
including diabetes, psychological distress, and alcohol con-
sumption. Further related studies include analyzing resi-
dents’ air pollution exposure, stress levels, and infectious

diseases based on street-view data (Apte et al., 2017; Han
et al., 2022; Psyllidis et al., 2023).

More importantly, SVI plays an increasing role in dis-
aster response, particularly in long-term recovery and re-
construction planning. It helps decision-makers understand
changes in disaster-affected areas, providing crucial refer-
ences for future disaster prevention and urban planning.
Curtis and Mills (2012) and Curtis et al. (2013) explored
recovery after tornadoes, hurricanes, and wildfires using
GSVI. Mabon (2016) utilized GSVI from the evacuation
zone around the Fukushima Daiichi Nuclear Power Plant
to assess dynamic disaster recovery methods. Additionally,
SVI has been used in disaster emergency response and risk
assessment. Diakakis et al. (2017) used GSVI to identify
the probability of buildings in Athens being flooded. Naik
(2016) designed a crowdsourced sensing system for disaster
response during catastrophic flooding in Chennai, India,
helping residents in flood-affected areas and reducing casu-
alties. SVI provides detailed ground-level information, such
as the condition of damaged buildings, the extent of street
flooding, and the state of infrastructure. This information is
crucial for disaster assessment and emergency response. By
combining SVI with RS data, we can obtain more accurate
and comprehensive disaster information, thereby enhancing
the precision and efficiency of disaster response and support-
ing post-disaster recovery and reconstruction. However, re-
search that integrates SVI with RSdata in a disaster response
scenario is still limited.
2.3. Cross-view Geolocalization

Unlike the single-image geolocalization task (Weyand
et al., 2016; Cepeda et al., 2023; Zhou et al., 2024), cross-
view geo-localisation enhances classic location-based ser-
vices and navigation systems by matching ground-level im-
agery with overhead imagery. This enables accurate posi-
tioning in GNSS-denied environments, e.g., during a dis-
aster. Workman et al. (2015) showed the superiority of
CNN-based features for localizing a wide-ranging dataset
with crawled Flickr images across the USA. In subsequent
work, they introduced the first cross-view geo-localisation
dataset, namely CVUSA Zhai et al. (2017). This dataset
leverages street-view images from GSVI all across the US
to match them against overhead imagery to locate the street-
views. Since then multiple datasets have arisen with different
focuses. CVACT Liu and Li (2019) aimed for a larger test
set than CVUSA and included the region of Canberra, Aus-
tralia, to test for cross-domain generalization. As an alterna-
tive to ground-level imagery, University-1652 Zheng et al.
(2020) introduced drone views of buildings to match them
against overhead imagery. Unlike CVUSA and CVACT,
which rely on center-aligned street-view images for match-
ing to satellite imagery, VIGOR Zhu et al. (2021) uses a
novel approach. This method allows multiple street view
images to be matched to a single satellite image at different
positions, allowing precise regression of the exact offset.
None of the previously released datasets have specifically
addressed cross-view geo-localization in disaster scenarios,
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which involve unique challenges such as destructed and
altered environments.

By exploiting image similarities and differences, cross-
view geolocation is characterized by contrastive learning. Vo
and Hays (2016) pioneered soft-margin triplet loss and set a
long-standing loss standard for this task. Further work intro-
duced specialized aggregation methods like the NetVLAD
layer Hu et al. (2018) or the SAFA-module Shi et al. (2019),
enhancing the ability to capture and aggregate discrimina-
tive features from cross-view images. Zhu et al. (2022) are
the first to introduce the Transformer architecture in this
domain and following work by Zhu et al. (2023), they
utilized the MLP-Mixer architecture with further perfor-
mance gains. Deuser et al. (2023) introduced hard negative
sampling based on the geographical distance as well as
feature similarity and showed superior performance. Fervers
et al. (2023) enhanced this previous work with a second
stage for re-ranking the results and improved overall retrieval
performance.

3. Methdology
3.1. Task statement

Given a set of street-view imagery {𝐿𝑠} and satellite
imagery {𝐿𝑎} with 𝐺𝑎 refers to the geographical locations
(e.g., longitude and latitude) of satellite imagery, our objec-
tive to learn a cross-view embedding space ℝ𝐶𝑉 (e.g., via a
non-linear function 𝑓 (𝐿𝑠, 𝐿𝑎) → ℝ𝐶𝑉 ) in which two tasks
are solved simultaneously: 1) each street-view imagery 𝐿𝑠is close to its corresponding satellite imagery 𝐿𝑎 in the em-
bedding space ℝ𝐶𝑉 so that the correct geographical location
can be retrieved based on their similarities in the embedding
space; 2) each pair of street-view and satellite imagery
{𝐿𝑠, 𝐿𝑎} is close to all other pairs where a similar level
of damage perception are observed. Figure 2 shows how
we achieve this objective by integrating two GeoAI models
(i.e., CVDisaster-Geoloc and CVDisaster-Est), namely the
disaster perception estimation model and the cross-view
geolocalization model, into a single framework CVDisaster.
In the rest of the section, we will elaborate on the detailed
design specifics and model choice.
3.2. Cross-view Geolocalization via Contrastive

Learning
In this paper, we formulate CVDisaster-Geoloc, the task

of cross-view geolocalization, as a imagery retrieval prob-
lem, where an image encoder 𝑓 () is a nonlinear function
𝑓 (𝐈𝑖,𝜽) ∶ ℝ𝐻×𝑊 ×3 → ℝ𝐷, which is parameterized by 𝜽 and
maps the input image feature space (i.e., spatial dimension
of 𝐻 ×𝑊 with three RGB bands) into a vector embedding
representation of 𝐷 dimension. Herein, cross-view means
that 𝐈𝑖 = {𝐿𝑖

𝑠, 𝐿
𝑖
𝑎} consisting of paired colocated SVI and

satellite imagery, so that the corresponding geo-coordinates
𝐺𝑎 from satellite imagery can be queried to use as the
geographical coordinates of the input SVI. In this setting,
two factors are of key importance for a good cross-view
geolocalization model, which are the used image encoder

𝑓 () and the vector embedding representation in the learned
feature space ℝ𝐷.
3.2.1. Siamese Image Encoder with the modern

ConvNeXt
To build a rock-solid image encoder for both SVI and

satellite imagery, we follow the design in Deuser et al.
(2023) by using a Siamese network that uses the modernized
ConvNeXt as a backbone (Liu et al., 2022). Similar to the
classic ResNet(He et al., 2016), ConvNeXt belongs to the
Convolution Neural Network (CNN) family, which follows
the classic sliding-window, fully convolutional paradigm,
but brings in a list of modern neural architecture designs
specificity for performance boosting, especially for high-
resolution input, such as satellite imagery.

The key motivation for using ConvNeXt as the image
encoder 𝑓 () is actually intuitive: first, it keeps the simplic-
ity and effectiveness of classic CNN then modernizes the
ResNet step by step towards the modern Swin Transformer
(Liu et al., 2021) style to ensure performance gain. Figure
3 shows the architecture of the 4-stage ConvNeXt network
and highlights a comparison between ConvNeXt and ResNet
blocks. Herein, it is necessary to notice the following modi-
fication w.r.t a classic ResNet model.

Stage Compute Ratio: For classic ResNet, the compu-
tation distribution across different stages are decided empir-
ically. For example, ResNet50 is featured with a number of
blocks distributed into four stages with a ratio of (3,4,6,3),
which makes the convolution operation heavy already in an
early stage. One change in Swin Transformer is to reduce the
stage compute ratio to 1:1:9:1, which has been introduced
to ConvNeXt as well. As a result, the number of blocks in
ConvNeXt50 becomes (3,3,9,3).

Patchify Layer: As natural images are inherently re-
dundant, a common practice in the classic ResNet family
is to use a stem cell for aggressively down-sampling. How-
ever, ViT’s patch encoder makes this even more aggressive
by adopting a large kernel size and non-overlapping con-
volution, namely the "patchify" layer. Similar designs are
adopted in the new ConvNeXt with a 4 × 4 non-overlapped
convolution layer to accommodate the network’s multi-stage
nature.

Inverted Boottleneck and Large Kerner: Following a
similar idea in the Transformer block, the ConvNeXt block
also uses an inverted bottleneck by keeping the dimension of
the hidden layer four times of the input dimension. This idea
has been proven to be beneficial in the popular MobileNetV2
(Sandler et al., 2018) and many more advanced CNN mod-
els (Koonce and Koonce, 2021). Moreover, the ConvNeXt
benefits from its larger kernel-sized convolution design,
which brings a significantly better performance based on
the Liu et al. (2022). As a prerequisite for a larger kernel,
the depthwise convolution layer is placed prior to the dense
convolutional layers as shown in the comparison of Figure3.

Micro-scale Modification: The modification involves
a list of micro-scale improvements, mostly related to the
activation function and normalization layer. For instance, the
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Figure 3: The siamese image encoder for cross-view geolocalization using (a) a four-stage ConvNeXt; (b) the comparison of
ConvNeXt and ReseNet blocks.

ReLU used in ResNet is replaced by Gaussian Error Linear
Unit (GELU) (Hendrycks and Gimpel, 2016), which is in
fact a smoother variant of ReLU commonly used in modern
transformer models. The Batch Normalization (BN) is re-
placed by the simpler Layer Normalization (Ba et al., 2016)
(LN). Furthermore, the downsampling layers are added only
between two different stages which are also inspired by the
design of Swin Transformers.

Based on this modernized ConvNeXt backbone, we
build a siamese network (Figure 3) as our image encoder 𝑓 ()
for both SVI and satellite imagery by adapting the network
input to different spatial dimensions. Noticeably, although
the Siamese network is trained on cross-view imagery, the
inference can handle a single input of SVI as a query base.

3.2.2. Contrastive Learning with Hard Negative
Sampling

The key to cross-view geolocalization is how to train a
siamese ConvNeXt so that one can obtain the desired vector
embedding representation of 𝐈𝑖 = {𝐿𝑖

𝑠, 𝐿
𝑖
𝑎} in the learned

feature space ℝ𝐷. Herein, we considered two factors to
ensure efficient and effective representation learning in this
cross-view setup: 1) contrastive pre-training on large-scale
datasets and 2) fine-tuning with new cross-view imagery
from the case study area.

Given the popularity of cross-view geolocalization, there
are mainly three large-scale datasets, namely CVUSA (Work-
man et al., 2015), CVACT (Liu and Li, 2019), and VIGOR
(Zhu et al., 2021), which have been made available to the
research community. Different in their data sizes, landscape,
and sample density, these three datasets form a good basis
for pre-training a cross-view geolocalization model to gain
nice general-sense vector representations. In this context,
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we pre-trained the siameses ConvNeXt network on all three
datasets (i.e., CVUSA, CVACT, and VIGOR) by using the
contrastive learning objective.

Following the "cluster" hypothesis that "closely associ-
ated documents tend to be relevant to the same requests"
(Voorhees, 1985), the most common approach of contrastive
learning is to simultaneously minimize the distance between
the embeddings of the anchor 𝑡𝑎 and the positive image
𝑡𝑝 while maximizing the distance to the negative sample
𝑡𝑛. Therefore, a simple Triplet loss function looks like the
following:

𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡 = [||𝑓 (𝑡𝑎)−𝑓 (𝑡𝑝)||2− ||𝑓 (𝑡𝑎)−𝑓 (𝑡𝑛)||2+𝑎]+ (1)
Here, 𝑓 () is the aforementioned image encoder (e.g.,

ConvNeXt) whose parameter 𝜽 will be learned. To prevent
the encoder from pushing the negative image without limita-
tion, a rectifier term with margin 𝑚 is introduced to keep the
maximum distance between the anchor and negative smaller
than 𝑚.

Compared to the triplet loss, the InfoNCE (Oord et al.,
2018; Radford et al., 2021) loss is often considered more ro-
bust as it is able to make use of all available negative samples
with the batch. Specifically the InforNCE, in a supervised
learning setting, computes categorical cross-entropy loss
to identify the positive sample amongst a set of negative
samples (Weng, 2021). Given a context vector 𝑐, the positive
sample is drawn from a conditional distribution 𝑝(𝑥|𝑐),
where (𝑁 − 1) negative samples are drawn from the same
distribution 𝑝(𝑥) but without condition. In this context, the
probability of correctly selecting the positive samples can be
formulated as follows:

𝑝(𝐶 = pos|𝑋, 𝐜) =
𝑓 (𝐱pos, 𝐜)

𝑓 (𝐱pos, 𝐜) +
∑𝑁−1

𝑗=1 𝑓 (𝐱𝑗 , 𝐜)
(2)

Here, N is the total number of samples in a batch, and
𝑓 (𝐱, 𝐜) ∝ 𝑝(𝐱|𝐜)

𝑝(𝐱) is the similarity or scoring function between
two samples.

Then, the InforNCE loss tries to optimize the negative
log probability of correcting selecting the positive samples,
thus can be calculated as follows:

InfoNCE = −𝔼
[

log 𝑝(𝐶 = pos|𝑋, 𝐜)
]

(3)
Although InforNCE has been intensively used in unsu-

pervised and self-supervised representation learning (Mai
et al., 2023; Vivanco Cepeda et al., 2024; Guo et al., 2024),
it also offers a promising way for supervised representation
learning in this cross-view setup. In this paper, we leverage
the InforNCE as our contrastive learning loss in both the pre-
training and fine-tuning stages for cross-view geolocaliza-
tion. During the fine-tuning, we take the model weights pre-
trained on CVUSA data given its relatively large size and
geographical closeness, then fine-tune the model on the new
cross-view imagery collected from the study area in Sanibel
Island (Florida, USA) after the Hurricane IAN. To this end,
we also compare the geolocalization performance with and
without the fine-tuning stage in Section 4 as an ablation
study.
3.3. Damage Perception Estimation with

Cross-view Imagery
Herein, CVDisaster-Est, specifically the task of damage

perception estimation, is tackled as a multi-class image
classification problem. Similarly to the geolocalization task,
we define an image encoder 𝑓 () as a nonlinear function
𝑓 (𝐈𝑖,𝜽) ∶ ℝ𝐻×𝑊 ×3 → ℝ𝐵 parameterized by 𝜽 and would
map the input image feature space (again spatial dimension
of 𝐻 ×𝑊 with RGB three bands) into a vector embedding
representation of 𝐵 dimension, but following by a softmax
classification layer. In this manner, we can use exactly the
same cross-view imagery pairs (e.g., 𝐈𝑖 = {𝐿𝑖

𝑠, 𝐿
𝑖
𝑎}) to
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simultaneously estimate the damage perception level of the
place when another model is trying to decide where SVI are
collected.

Although this is a straightforward model design, we
argue that this can bring key advantages for CVDisaster
against existing disaster mapping approaches (Li et al., 2020;
Herfort et al., 2019; Hu et al., 2023b). On the one hand,
the data preprocessing is synchronized with zero overhead
for preparing two datasets for distinct tasks (i.e., geolo-
calization and disaster mapping). On the other hand, the
cross-view imagery can provide a unique combination of
observation angles and opportunities to fasten and automate
the traditional post-disaster survey with inherent geolocation
metadata immediately available during the survey. This can
be extremely helpful in such a time-crucial application sce-
nario.

In the rest of this section, we will elaborate on how we
tackle the damage perception estimation task in CVDisaster
using the modern GeoAI-based imagery classification ap-
proach, specifically the couple GCViT model.
3.3.1. Coupled Global Context Vision Transformer

To tackle this cross-view image classification task, we
develop a coupled GCViT model (CGCViT) as depicted in
Figure 4) including two separate branches for SVI and satel-
lite imagery, respectively. Unlike the siamese ConvNeXt, the
design of CGCViT is driven by two special considerations:
first, the appearance of disaster damages from two per-
spectives (head-view and street-view) differs significantly,
therefore, requires highly-distinct image encoders 𝑓 () or sets
of parameter 𝜽; second, CGCViT can benefit from the com-
plementary prediction capabilities learned from cross-view
pairs at the same time. Moreover, the inference process also
differs as the classification of damage perception level al-
ways relies on both views while the geolocalization inference
actually uses only SVI imagery to query an existing satellite
database. This is also why there is a single weight-shared
image encoder designed for the cross-view geolocalization
task.

As a backbone network, the core idea of GCVit is to
advocate short- and long-range spatial dependencies with
a multi-resolution architecture where self-attention is still
computed in local windows but can reach long-range patch
via global tokens (Hatamizadeh et al., 2023). Given a cross-
view imagery pair 𝐈𝑖 = {𝐿𝑖

𝑠, 𝐿
𝑖
𝑎}with the same dimension of

ℝ𝐻×𝑊 ×3, the CGCViT consists of two branches of GCViT
following by a 2D average pooling layer and a softmax
classifier. Each branch will include four stages of local
and global self-attention modules similar to ConvNeXt(Liu
et al., 2022) and Swin Transformer (Liu et al., 2021), but
with an increasing number of channels and decreasing spa-
tial resolutions, both by a factor of 2. Herein, the difference
between local and global self-attention modules lies in the
access to global queried features from the global query
generator.

Global Token Generator: As highlighted in Figure 4,
the key advantage of GCViT comes from the fact that global

attention is able to query long-range perception fields while
keeping the local attention window unchanged. Herein, the
global query token or so-called global self-attention can be
pre-computed between each stage. Specifically, the global
attention query 𝐆𝑞 starts with a matrix of size 𝐵×𝐶×ℎ×𝑤,
where 𝐵, 𝐶 , ℎ×𝑤 refers to batch size, channels, and spatial
dimensional of the local window. In this way, the global
query generator will repeat along batch dimension, and then
be reshaped and added into multiple heads of local self-
attention modules.

Global Self-Attention: Based on the global query token,
the global self-attention can be formulated as follows:

Global_Attention(𝐠𝑞 ,𝐤, 𝐯) = Softmax(𝐠𝑞𝐤
√

𝑠
+ 𝐩)𝐯 (4)

where 𝑠, 𝐩 refers to a scaling factor and a learnable
relative position embedding vector. For instance, if the im-
age patch position ranges from [−𝑏 + 1, 𝑏 − 1] then 𝐩
will be generated based on spatial positions from a spatial
grid of ℝ(2𝑏−1)×(2𝑏−1). In this way, local self-attention has
access to even long-range information from imagery regions
outside of local windows, which provides an effective way
of extending the reception field of self-attention without
increasing the computation complexity.

In this paper, the CGCViT is able to extend this state-of-
the-art ViT model into a dual branch setting and provide a
rock-solid backbone for the cross-view damage classification
task.

4. Experiment
4.1. Dataset overview

Hurricane IAN formed on September 23, 2022, causing
severe storm surges and significant economic losses, making
it one of the most devastating hurricanes in the history of
Florida, USA. To this end, we have selected the renowned
Sanibel Island and its surrounding area in southwest Florida,
which was hit devastatingly by Hurricane IAN in 2022, as
our case study area and created a novel cross-view dataset,
namely CVIAN.

VHR Satellite Imagery: VHR satellite imagery pro-
vides extremely detailed overhead surface information, which
is crucial for assessing disaster impacts, planning rescue op-
erations, and formulating recovery strategies. For Hurricane
IAN, the National Oceanic and Atmospheric Administration
(NOAA) has collected relevant VHR satellite imagery. Each
image is assembled into a mosaic distributed in tiles, with
a ground sample distance of approximately 15 to 30 cm
per pixel. In this study, we selected VHR imagery from
September 30, 2022 from the NOAA open data portal1,
and divided it into five subareas to support the assessment
of Hurricane IAN’s damage extent. These images provide
a fine-grained head-view of the study area right after the
hurricane, thus enhance our understanding of the impact

1https://storms.ngs.noaa.gov/storms/ian
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Figure 5: Overview of the study area together with the street-view and VHR satellite imagery. Five subareas are depicted in
different colors in the middle image, where (a) to (d) are selected cross-view imagery pairs of CVDisaster.

Table 1
Overview of the CVIAN dataset, split into five subareas, respectively.

Subarea VHR Reso (cm) Image Pixel (Rows, Columns) Num of raw SVIs Num of selected SVIs Aera (km2)

1 27 37,137 × 78,833 7,511 112 80.53
2 27 64,934 × 46,403 42,987 386 134.40
3 27 37,137 × 92,732 59,932 112 133.96
4 27 37,137 × 78,833 158,605 271 125.70
5 27 46,403 × 78,833 688,504 254 177.77

of the disaster and aid in developing effective response and
recovery measures.

Street-view Imagery : The street-view images of Hur-
ricane IAN used in our study were collected from the open-
source Mapilliry platform, specifically from a mapping cam-
paign conducted by Site Tour 360 in our study area. These
images were captured by Site Tour 360 after access was
restored post-disaster. Site Tour 360 utilized Mapillary as
an mapping tool. The Mapillary platform can rapidly and
openly disseminate these high-resolution images, which is
crucial for disaster response. This enables rescue organi-
zations and the public to promptly access the latest post-
disaster images, aiding in identifying areas in urgent need
of assistance and efficiently allocating resources.

For downloading and filtering these street-view images,
we adopted the ZenSVI 2 tool. ZenSVI can efficiently down-
load, process, and analyze large-scale street-view image
data, providing valuable data support for planning post-
disaster recovery efforts. In total, we have processed and
filtered in total 957,539 SVI records from Mapiliary using
geographic extents (i.e., five subareas) and their timestamps
(i.e., only after 28th September, 2022), out of which we have
selected 1,135 and manually labelled them for the damage
perception level with a group of GIS and disaster experts.

2https://github.com/koito19960406/ZenSVI

The detailed split of SVI and extent of VHR satellite imagery
is listed in Table 1.

Damage Perception Reference Data: Based on the
aforementioned 1,135 SVI related to Hurricane IAN, we
manually categorized them into three damage severity lev-
els - light, medium, and heavy damages - based on a list
of quantifiable and disaster-related indicators. Specifically,
light damage images are characterized by a clean scene
with no significant damage or only light damage, such as
small areas of fallen trees or a few small road signs knocked
down. Medium damage images are relatively cluttered and
typically include larger or more extensive areas of fallen
trees, as well as standing water around the trees. These
images may also show more fallen road signs or road closure
signs. Heavy damage images are very chaotic, featuring
large or extensive areas of fallen trees, flooded roads, and
housing trash. These indicators provide a extensible and
subjective basis of disaster damage perception, which serves
as the reference data for the subsequent cross-view imagery
classification and validation.

As shown in Figure 6, we have elaborated some exem-
plary SVI in our CVIAN dataset with light, medium, and
heavy damage based on different damage indicators. Among
them, (a) and (b) are classified based on the amount fallen
trees. (c) and (d) are classified according to the amount of
housing trash. (e) and (f) are classified based on the damage
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Medium Damage

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Light Damage Heavy Damage

Figure 6: Stree-view imagery-based damage perception classification criteria with three level damages (light, medium, and heavy
damage from low to high). (a)-(b): damage perception estimated based on fallen trees, (c)-(d): damage perception estimated
based on housing trash, (e)-(f): damage perception estimated based on street signs or destroyed buildings, (g)-(h): damage
perception estimated based on standing water in the street.

to road signs or destroyed buildings. (g) and (h) are classified
according to the extent of standing water. This completes the
damage perception reference data.

4.2. Experiment setup for Cross-View
Geolocalization

In our experimental setup for CVDisaster-Geoloc, we
employed a ConvNeXt-Base model, initialized using a pre-
trained Sample4Geo model (Deuser et al., 2023). This pre-
training on CVUSA allowed us to leverage a robust feature
extraction as CVUSA features rural and urban environments.
During pre-processing, we made sure that the street-view
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(a) (b) (c) (d) (e) (f)

Figure 7: Heatmaps for correct geolocalized imagery pairs together with raw cross-view SVI and satellite imagery.

images were oriented north according to the CVUSA stan-
dard. We also cropped the top and bottom of the images
to reduce their size and eliminate irrelevant information,
thereby streamlining the input data for more efficient pro-
cessing. As a result, the cross-view imagery pairs are of
size 512 × 1024 pixels and 512 × 512 pixels for SVI and
satellite imagery, respectively. During training, we used the
InfoNCE loss function with label smoothing set to 0.1. This
regularization technique helped to mitigate overconfidence
in the predictions, thus promoting better generalization.

The model fine-tuning process was performed over 10
epochs using the AdamW (Kingma and Ba, 2014) optimizer
with an initial learning rate of 0.0001. We use a learning rate
scheduler with a warm-up of one epoch and a cosine decay
for the remaining epochs. To address potential overfitting
and improve generalization, we incorporate several data aug-
mentation techniques. For both images, we use synchronous
horizontal flipping and rotation to ensure consistent orienta-
tion with the corresponding street view images. In addition,
we applied grid dropout and coarse dropout to prevent the
model from focusing excessively on certain regions of the
images. Color jittering is also used to improve the model’s
robustness to variations in lighting conditions.

As for CVDisaster-Est, we implemented the CGCViT
model based on a backbone network of GCViT-Tiny with
20 million parameter pre-trained on ImageNet-1K dataset
(Deng et al., 2009). Herein, we used exact the same cross-
view imagery pairs as in CVDisaster-Geoloc with 512×1024
pixels for SVI and 512 × 512 pixels satellite imagery as a
input feature size. Specifically, we fine-tuned the CGCViT
with the AdamW (Kingma and Ba, 2014) optimizer for 100
epochs with an initial learning rate of 0.03, weight decay of
0.05 with acosine decay scheduler, and 10 warm-up epochs,
respectively.
4.3. Geo-localization results

In our evaluation, we start with comparing state-of-
the-art cross-view geolocalization models that were pre-
trained on the CVUSA data, specifically TransGeo (Zhu
et al., 2022), SAIG-D (Zhu et al., 2023), and Sample4Geo
(Deuser et al., 2023). First, we directly apply three pre-
trained models on the CVIAN dataset to serve as a baseline

of cross-view geolocalization performance. Next, we com-
pare the fine-tuned model against pre-trained baseline mod-
els and conduct an ablation study w.r.t the ratio of train and
test samples, ranging from 1:9 to 6:4. Since the CVDisaster-
Geoloc is formulated as an imagery retrieval task, we con-
sider four Recall@K evaluation metrics, namely, Recall@1,
Recall@5, Recall@10, and Recall@1%, where K refers to
the top K imagery that given by the query. A higher value
(i.e., ranging from 0 to 100) simply means better accuracy.

Pre-trained Cross-view Geolocalization: Table 2 show
a few interesting findings: 1) all three pre-trained models
form a nice baseline of addressing cross-view geolocal-
ization tasks in a completely unseen area with a R@10
around 80%. Noticeably, the pre-training dataset, namely
the CVUSA dataset, differs with the CVIAN to a large
extend in both SVI (one from GSVI and one from Mapil-
lary) as well as Satellite imagery. These results confirm the
promising value of cross-view geolocalization approaches
as a pure vision-based alternative to classic positioning
techniques (e.g., GPS, Wifi), especially in a disaster re-
sponse scenario; 2) Given 30% of CVIAN imagery pairs
for fine-tuning, CVDisaster-Geoloc achieves significant per-
formance boosting at almost all Recall@K metrics (i.e.,
except Recall@1%) against three baseline models, with a
relatively small improvement compared to Sample4Geo as
they shared similar network architectures. This means one
can easily adapt pre-trained cross-view geolocalization mod-
els to a new case study area with a limited cost of preparing
"warming-up" contrastive learning samples for a much more
affordable fine-tuning process than training an entirely new
model from scratch, which will be an important feature
desired for timely disaster response and geolocalization us-
age. In short, the preliminary results from implementing
CVDisaster-Geoloc model on Hurricane IAN uncovers a
promising avenue for leveraging pre-trained cross-view ge-
olocalization techniques for low-cost and weather-resilient
location awareness with such a time-critical task.

Moreover, by visualizing the correct geolocalized im-
agery pairs in Figure 7 (a) to (f), we see that the CVDisaster-
Geoloc model was able to correlate SVI and satellite imagery
based on landmarks, such as street, crossroad, building,
which is similar to how human will spatially geolocalize
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Table 2
Performance Metrics for Different Pre-trained Geolocalization Models

Method Fine-tuned R@1 R@5 R@10 R@1%

TransGeo Zhu et al. (2022) ✗ 38.30 67.99 79.34 97.25
SAIG-D Zhu et al. (2023) ✗ 43.62 72.43 83.33 98.05
Sample4Geo Deuser et al. (2023) ✗ 74.56 91.22 95.48 99.11

CVDisaster-Geoloc (2:8) ✓ 81.84 96.68 98.45 98.34

Table 3
Performance Metrics for Fine-tuned Geolocalization Models with Different Train/Test Ratios.

train:test 1:9 2:8 3:7 4:6 5:5 6:4

Fine-tuned ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

Recall@1 75.69 79.72 75.97 81.84 78.86 87.47 79.03 87.74 83.33 92.20 82.30 91.37
Recall@5 92.22 95.87 92.47 96.68 93.80 97.97 94.39 98.23 96.99 99.47 96.02 98.89
Recall@10 96.06 98.13 96.23 98.45 97.47 99.11 97.49 99.26 98.94 99.82 98.67 99.56
Recall@top1 96.06 98.13 96.01 98.34 95.57 98.99 94.98 98.52 96.99 99.47 95.13 98.89

themselves in an unknown place. Unlike to existing bench-
marks, the CVIANdataset is featured by massive and di-
verse damages (e.g., for streets, buildings, and vegetation as
shown in Figure 6) caused by Hurricane IAN, which pose
a unique challenge for our CVDisaster-Geoloc model. Un-
surprisingly, the heatmap visualization confirms the robust-
ness of our model in handling such sophisticated structure
changes in the built environment at a much affordable cost
and additional effort. From our perspective, these results can
motivate future works to investigate even spatial-temporal
changes in a cross-view setup.

Ablation study: As an ablation study, we examine the
effect of different train and test ratios on the model perfor-
mance of CVDisaster-Geoloc. Specifically, we consider two
variables here: 1) pre-trained or fine-tuned models, 2) how
many samples are used for fine-tuning. Table 3 shows the
comparative performance changes w.r.t these two variables.
Two key findings deserve extra attention: first, an obvious
finding is that more fine-tuning samples lead to generally
higher performance boosting with an exception from 5:5 to
6:4, where the fine-tuned model performance start to drop. A
potential reason is related to the size of our CVIAN dataset
and its relatively small geographical coverage, which can
be a future work direction to consolidate the finding here;
second, we see already a satisfying performance boosting

using limited fine-tuning with up to a few hundred imagery
pairs (e.g, 1:9 and 2:8). This provides extra flexibility and
reduced deploying time for the proposed framework during
a real-world disaster response.
4.4. Disaster mapping results

To evaluate the CVDisaster-Est model on cross-view
damage perception estimation, we first compare the CGViT
model trained on cross-view imagery pairs with two single-
view models (i.e., one trained on SVI and one trained on
VHR satellite imagery). Next, we conduct a similar ablation
study as in CVDisaster-Geoloc to investigate the effect of
fine-tuning ratios on the model performance. In this context,
we consider mainly four multi-classification metrics, namely
Precision (P), Recall (R), Overall Accuracy (OA), and the F1
score.

Cross-view Damage Perception Estimation: Table 4
and 5 compare the performance of our CVDisaster-Est
model with two single-view models based on either SVI or
VHR satellite imagery. Specifically, Table 4 shows a detailed
class-wise evaluation metrics w.r.t three level of damage
labelled in the CVIAN dataset (i.e., Light, Medium, and
Heavy Damages). A clear pattern is that medium damages
are often more challenging (with low F1 scores in all three
cases) than light and heavy damages. This can be attributed

Table 4
Class-wise Performance Comparison of Precision (P), Recall (R) and F1 score for SVI, VHR Satellite, and CVDisaster-Est.

SVI VHR Satellite CVDisaster-Est

P R F1 P R F1 P R F1

Light 78.61 88.15 0.83 72.52 82.37 0.77 82.64 87.64 0.85
Medium 62.04 56.30 0.59 55.69 39.08 0.45 64.29 66.81 0.65
Heavy 81.88 72.19 0.76 65.80 75.15 0.70 89.15 71.88 0.79

Li et al.: Preprint submitted to Elsevier Page 11 of 15



CVDisaster
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GT: Light  

Predic: Light
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Figure 8: Visualizations of CVDisaster-Est classification results. (a) to (c) are correctly predicted imagery pairs and (d) to (f) are
wrongly predicted imagery pairs. In each image, we show both Ground Truth (GT) and predicted (Predic) labels.

Table 5
Overall Performance Metrics for SVI, Satellite, and
CVDisaster-Est.

P R OA F1

SVI 74.17 72.21 74.50 0.73
VHR Satellite 64.67 65.69 67.07 0.65
CVDisaster-Est(5:5) 78.69 75.44 77.96 0.77

Table 6
Performance Metrics for Cross-View Damage Perception Esti-
mation with different Train Test ratios.

train:test 1:9 2:8 3:7 4:6 5:5 6:4

P 65.65 73.00 68.87 73.63 78.69 70.99
R 65.36 72.12 69.06 72.45 75.44 70.36
OA 66.84 73.80 70.05 73.89 77.96 71.31
F1 0.66 0.73 0.69 0.73 0.77 0.71

to how the damage perception levels are classified in the
reference dataset (see Figure 5) as medium damages involves
both qualitative and quantitative analysis of those damage
indicator we considered (as introduced in Section 4.1), thus
pose a general challenge to disaster mapping approaches
(Dong and Shan, 2013). More importantly, we see a stimu-
lating accuracy improvement when extending single-view to
cross-view, for instance, CVDisaster-Est outperforms both
SVI and VHR satellite in all three classes in P and F1 score.
Nevertheless, Table 5 confirms the advantage of using cross-
view imagery for disaster perception estimation rather than
any single-view models.

Moreover, the aforementioned statement can be strength-
ened when we start to visualize the CVDisaster-Est clas-
sification results w.r.t where it works and where it fails.
Figure 8 demonstrates both correct and incorrect classifica-
tion cases using the cross-view CVDisaster-Est model. The
correct cases (e.g., Figure 8(a) to (c)) basically echo the
previous finding where SVI provides major hints based on

various damage indicators (e.g., fallen trees, housing trash,
etc). As for incorrect examples (e.g., Figure 8 (d) to (f)),
one interesting pattern is that though heavy damage might
be misclassified as medium damage, there is not a single
case that light damage cases are classified as heavy ones.
Herein, medium damages remain challenging as they may
be confused with both light and heavy damages.

Ablation Study: Similarly to CVDisaster-Geoloc, we
conduct an ablation study to examine the influence of train
and test ratios in the classification performance as listed
in Table 6. Herein, one can see that the training process
of cross-view damage perception estimation involves more
uncertainties when exposed to an increasing number of
training samples. Our assumption is that disaster damages
are often spatial auto-correlated due to environmental and
human factors, thus a random sampling is insufficient to
ensure all possible damage types are well-covered. In this
context, a possible solution is to explicitly consider the spa-
tial auto-correlation of cross-view imagery early enough in
the sampling process, such as using metric auto-correlation
(Wang et al., 2024) or locality sensitive sampling (Luo and
Shrivastava, 2019).

man-made 0.26

highway 0.23

natural light 0.23

desert_road 0.16

open area 0.14

Light Damage Medium Damage Heavy Damage

man-made 0.39

campsite 0.24

open area 0.18

natural light 0.16

sky 0.04

man-made 0.42

open area 0.42

natural light 0.36

junkyard 0.30

campsite 0.20

(a) (b) (c)

Figure 9: Selected example of SVI scene classification with
Place365 classes for three-level damages in the CVIAN dataset
(from left to right: light, medium, and heavy damage).
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5. Discussions
In this paper, we propose CVDisaster, as a novel frame-

work to simultaneously tackle two important tasks in a disas-
ter response scenario, which are cross-view geolocalization
and disaster perception estimation. As a case study, we con-
structed a first-of-this-kind dataset (i.e., the CVIAN dataset)
based on SVI and VHR satellite imagery collected around
Sanibel Island after Hurricane IAN, based on which we con-
ducted extensive evaluation of the proposed framework and
its major components. Despite the promising results, there
are a few limitations that deserve future attention: 1) Though
pre-trained geolocalization models offer a good baseline per-
formance for CVDisaster-Geoloc, CVDisaster still requires
training efforts mainly to learn and align the classification
feature space (CVDisaster-Est) to various damage indicators
spotted by human experts. Therefore, a future work direction
is to automatically extract and quantify those damage related
indicators from SVI, for instance by adopting the Place365
scene classification categories (Figure 9). Of course, it would
be great if disaster-related scenes or targets, such as flooding
or housing trash, can be added to those pre-training datasets.
To this end, we see CVDisaster make a unique contribution
towards inspiring a list of integrated cross-view applications
with the GeoAI research community. 2) there are still many
unsolved challenges in such a cross-view disaster mapping
scenario. For example, Figure 10 shows an interesting case
where from the VHR satellite imagery that NOAA collected
on 30th September 2022 (two days after Hurricane IAN),
one can observe massive standing water on the street and
cares need to risk for access. However, from the Mapillary
SVI taken on 2nd October (four days after Hurricane IAN),
water is cleaned with only road signs ("Detour") left as a sign
of potential damages. Together with the inherent ambiguity
of the damage perception level, the rapid temporal change
during the disaster poses another level of difficulty to this
task. Future cross-view models should definitely take such
temporal changes into considering during the model pre-
training. Last but not the least, our future work will focus
on extending the CVIAN dataset to cover multiple areas and
disaster types around the world.

6. Conclusions
In this work, we present a novel framework, namely

CVDisaster, to a time-crucial application scenario of disaster
mapping, where two types of information are key, which are
disaster damage perception and geolocation awareness. To
the best of our knowledge, CVDisaster is the first of this
kind framework that can simultaneously achieve cross-view
geolocalization (CVDisaster-Geoloc) and disaster damage
perception estimation (CVDisaster-Est). A case study on
the CVIAN dataset collected from Hurricane IAN confirms
the advantages of our CVDisaster framework over classic
positioning techniques (e.g.., GPS, Wifi) as well as damage
assessment approaches purely based on Very High Resolu-
tion (VHR) satellite imagery. We show that one can achieve

highly competitive performance (over 80% for geolocaliza-
tion and 75% for damage perception estimation) with limited
fine-tuning efforts by benefiting from state-of-the-art pre-
trained vision models, like ConvNeXt and CGCViT. We
hope our findings can motivate future cross-view models and
applications within a broader GeoAI research community.

Acknowledgements
The authors gratefully acknowledge the computing time

granted by the Institute for Distributed Intelligent Systems
and provided on the GPU cluster Monacum One at the
University of the Bundeswehr Munich.

Disclosure statement
No potential conflict of interest was reported by the

author.

References
Apte, J.S., Messier, K.P., Gani, S., Brauer, M., Kirchstetter, T.W., Lunden,

M.M., Marshall, J.D., Portier, C.J., Vermeulen, R.C., Hamburg, S.P.,
2017. High-resolution air pollution mapping with google street view
cars: exploiting big data. Environmental science & technology 51, 6999–
7008.

Ba, J.L., Kiros, J.R., Hinton, G.E., 2016. Layer normalization. arXiv
preprint arXiv:1607.06450 .

Biljecki, F., Ito, K., 2021. Street view imagery in urban analytics and gis:
A review. Landscape and Urban Planning 215, 104217.

Cepeda, V.V., Nayak, G.K., Shah, M., 2023. Geoclip: clip-inspired
alignment between locations and images for effective worldwide geo-
localization, in: Proceedings of the 37th International Conference on
Neural Information Processing Systems, pp. 8690–8701.

Cicchino, J.B., McCarthy, M.L., Newgard, C.D., Wall, S.P., DiMaggio, C.J.,
Kulie, P.E., Arnold, B.N., Zuby, D.S., 2020. Not all protected bike lanes
are the same: Infrastructure and risk of cyclist collisions and falls leading
to emergency department visits in three us cities. Accident Analysis &
Prevention 141, 105490.

Curtis, A., Mills, J.W., 2012. Spatial video data collection in a post-
disaster landscape: The tuscaloosa tornado of april 27th 2011. Applied
Geography 32, 393–400.

Curtis, J.W., Curtis, A., Mapes, J., Szell, A.B., Cinderich, A., 2013. Using
google street view for systematic observation of the built environment:
analysis of spatio-temporal instability of imagery dates. International
journal of health geographics 12, 1–10.

Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L., 2009. Imagenet:
A large-scale hierarchical image database, in: 2009 IEEE conference on
computer vision and pattern recognition, Ieee. pp. 248–255.

Deuser, F., Habel, K., Oswald, N., 2023. Sample4geo: Hard negative sam-
pling for cross-view geo-localisation, in: Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 16847–16856.

Diakakis, M., Deligiannakis, G., Pallikarakis, A., Skordoulis, M., 2017.
Identifying elements that affect the probability of buildings to suffer
flooding in urban areas using google street view. a case study from
athens metropolitan area in greece. International journal of disaster risk
reduction 22, 1–9.

Dong, L., Shan, J., 2013. A comprehensive review of earthquake-induced
building damage detection with remote sensing techniques. ISPRS
Journal of Photogrammetry and Remote Sensing 84, 85–99.

Feng, Y., Brenner, C., Sester, M., 2020. Flood severity mapping from
volunteered geographic information by interpreting water level from
images containing people: A case study of hurricane harvey. ISPRS
Journal of Photogrammetry and Remote Sensing 169, 301–319.

Li et al.: Preprint submitted to Elsevier Page 13 of 15



CVDisaster

(a) (b)

Figure 10: A Challenge case in the CVDisaster dataset. (a) VHR satellite imagery from 30th September, which is right after
Hurricane IAN landed in the city; (b) SVI in Mapillary collected on 2nd October, where water on the street has already been
cleaned but a road-sign of "Detour" was left as a proof of damage caused by Hurricane IAN.

Fervers, F., Bullinger, S., Bodensteiner, C., Arens, M., Stiefelhagen, R.,
2023. C-bev: Contrastive bird’s eye view training for cross-view image
retrieval and 3-dof pose estimation. arXiv preprint arXiv:2312.08060 .

Guo, D., Yu, Y., Ge, S., Gao, S., Mai, G., Chen, H., 2024. Spatialscene2vec:
A self-supervised contrastive representation learning method for spatial
scene similarity evaluation. International Journal of Applied Earth
Observation and Geoinformation 128, 103743.

Han, X., Wang, L., Seo, S.H., He, J., Jung, T., 2022. Measuring perceived
psychological stress in urban built environments using google street view
and deep learning. Frontiers in public health 10, 891736.

Hatamizadeh, A., Yin, H., Heinrich, G., Kautz, J., Molchanov, P., 2023.
Global context vision transformers, in: International Conference on
Machine Learning, PMLR. pp. 12633–12646.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image
recognition, in: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778.

Hendrycks, D., Gimpel, K., 2016. Gaussian error linear units (gelus). arXiv
preprint arXiv:1606.08415 .

Herfort, B., Lautenbach, S., Porto de Albuquerque, J., Anderson, J., Zipf,
A., 2021. The evolution of humanitarian mapping within the open-
streetmap community. Scientific reports 11, 3037.

Herfort, B., Li, H., Fendrich, S., Lautenbach, S., Zipf, A., 2019. Mapping
human settlements with higher accuracy and less volunteer efforts by
combining crowdsourcing and deep learning. Remote Sensing 11.

Hu, L., Wu, X., Huang, J., Peng, Y., Liu, W., 2020. Investigation of clusters
and injuries in pedestrian crashes using gis in changsha, china. Safety
science 127, 104710.

Hu, S., Feng, M., Nguyen, R.M.H., Lee, G.H., 2018. Cvm-net: Cross-view
matching network for image-based ground-to-aerial geo-localization, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Hu, X., Al-Olimat, H.S., Kersten, J., Wiegmann, M., Klan, F., Sun, Y.,
Fan, H., 2022. Gazpne: annotation-free deep learning for place name
extraction from microblogs leveraging gazetteer and synthetic data by
rules. International Journal of Geographical Information Science 36,
310–337.

Hu, X., Zhou, Z., Li, H., Hu, Y., Gu, F., Kersten, J., Fan, H., Klan,
F., 2023a. Location reference recognition from texts: A survey and
comparison. ACM Comput. Surv. 56. URL: https://doi.org/10.1145/
3625819, doi:10.1145/3625819.

Hu, Y., Mai, G., Cundy, C., Choi, K., Lao, N., Liu, W., Lakhanpal, G., Zhou,
R.Z., Joseph, K., 2023b. Geo-knowledge-guided gpt models improve
the extraction of location descriptions from disaster-related social media
messages. International Journal of Geographical Information Science
37, 2289–2318.

Hu, Y., Wang, J., 2020. How do people describe locations during a natural
disaster: an analysis of tweets from hurricane harvey. arXiv preprint
arXiv:2009.12914 .

Huck, J.J., Perkins, C., Haworth, B.T., Moro, E.B., Nirmalan, M., 2021.
Centaur VGI: A Hybrid Human–Machine Approach to Address Global
Inequalities in Map Coverage. Annals of the American Association of
Geographers 111, 231–251.

Keralis, J.M., Javanmardi, M., Khanna, S., Dwivedi, P., Huang, D., Tas-
dizen, T., Nguyen, Q.C., 2020. Health and the built environment in
united states cities: Measuring associations using google street view-
derived indicators of the built environment. BMC public health 20, 1–10.

Kim, S., Kim, D., Choi, S., 2020. Citycraft: 3d virtual city creation from a
single image. The Visual Computer 36, 911–924.

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 .

Koonce, B., Koonce, B., 2021. Efficientnet. Convolutional neural networks
with swift for Tensorflow: image recognition and dataset categorization
, 109–123.

Krylov, V.A., Kenny, E., Dahyot, R., 2018. Automatic discovery and
geotagging of objects from street view imagery. Remote Sensing 10,
661.

Kumar, A., Singh, J.P., 2019. Location reference identification from tweets
during emergencies: A deep learning approach. International journal of
disaster risk reduction 33, 365–375.

Li, H., Herfort, B., Huang, W., Zia, M., Zipf, A., 2020. Exploration of open-
streetmap missing built-up areas using twitter hierarchical clustering
and deep learning in mozambique. ISPRS Journal of Photogrammetry
and Remote Sensing 166, 41–51. URL: https://doi.org/10.1016/j.

isprsjprs.2020.05.007.
Li, H., Herfort, B., Lautenbach, S., Chen, J., Zipf, A., 2022. Improving

openstreetmap missing building detection using few-shot transfer learn-
ing in sub-saharan africa. Transactions in GIS 26, 3125–3146.

Li, H., Wang, J., Zollner, J.M., Mai, G., Lao, N., Werner., M., 2023a.
Rethink geographical generalizability with unsupervised self-attention
model ensemble: A case study of openstreetmap missing building de-
tection in africa, in: Proceedings of the 31st International Conference on
Advances in Geographic Information Systems, Association for Comput-
ing Machinery, New York, NY, USA. URL: https://doi.org/10.1145/
3589132.3625598, doi:10.1145/3589132.3625598.

Li, H., Yuan, Z., Dax, G., Kong, G., Fan, H., Zipf, A., Werner, M., 2023b.
Semi-supervised learning from street-view images and openstreetmap
for automatic building height estimation, in: 12th International Con-
ference on Geographic Information Science (GIScience 2023), Schloss
Dagstuhl-Leibniz-Zentrum für Informatik.

Li et al.: Preprint submitted to Elsevier Page 14 of 15

https://doi.org/10.1145/3625819
https://doi.org/10.1145/3625819
http://dx.doi.org/10.1145/3625819
https://doi.org/10.1016/j.isprsjprs.2020.05.007
https://doi.org/10.1016/j.isprsjprs.2020.05.007
https://doi.org/10.1145/3589132.3625598
https://doi.org/10.1145/3589132.3625598
http://dx.doi.org/10.1145/3589132.3625598


CVDisaster

Liu, L., Li, H., 2019. Lending orientation to neural networks for cross-
view geo-localization, in: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 5624–5633.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.,
2021. Swin transformer: Hierarchical vision transformer using shifted
windows, in: Proceedings of the IEEE/CVF international conference on
computer vision, pp. 10012–10022.

Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S., 2022. A
convnet for the 2020s, in: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 11976–11986.

Luo, C., Shrivastava, A., 2019. Scaling-up split-merge mcmc with locality
sensitive sampling (lss), in: Proceedings of the AAAI Conference on
Artificial Intelligence, pp. 4464–4471.

Mabon, L., 2016. Charting disaster recovery via google street view: A
social science perspective on challenges raised by the fukushima nuclear
disaster. International journal of disaster risk science 7, 175–185.

Mai, G., Lao, N., He, Y., Song, J., Ermon, S., 2023. Csp: Self-supervised
contrastive spatial pre-training for geospatial-visual representations, in:
International Conference on Machine Learning, PMLR. pp. 23498–
23515.

Mihunov, V.V., Lam, N.S., Zou, L., Wang, Z., Wang, K., 2020. Use
of twitter in disaster rescue: lessons learned from hurricane harvey.
International Journal of Digital Earth 13, 1454–1466.

Naik, N., 2016. Flooded streets—a crowdsourced sensing system for
disaster response: A case study, in: 2016 IEEE International Symposium
on Systems Engineering (ISSE), IEEE. pp. 1–3.

Nguyen, Q.C., Sajjadi, M., McCullough, M., Pham, M., Nguyen, T.T.,
Yu, W., Meng, H.W., Wen, M., Li, F., Smith, K.R., et al., 2018.
Neighbourhood looking glass: 360º automated characterisation of the
built environment for neighbourhood effects research. J Epidemiol
Community Health 72, 260–266.

Oord, A.v.d., Li, Y., Vinyals, O., 2018. Representation learning with
contrastive predictive coding. arXiv preprint arXiv:1807.03748 .

Psyllidis, A., Duarte, F., Teeuwen, R., Salazar Miranda, A., Benson, T.,
Bozzon, A., 2023. Cities and infectious diseases: Assessing the exposure
of pedestrians to virus transmission along city streets. Urban Studies 60,
1610–1628.

Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S.,
Sastry, G., Askell, A., Mishkin, P., Clark, J., et al., 2021. Learning
transferable visual models from natural language supervision, in: Inter-
national conference on machine learning, PMLR. pp. 8748–8763.

Salcedo-Sanz, S., Ghamisi, P., Piles, M., Werner, M., Cuadra, L., Moreno-
Martínez, A., Izquierdo-Verdiguier, E., Muñoz-Marí, J., Mosavi, A.,
Camps-Valls, G., 2020. Machine learning information fusion in earth
observation: A comprehensive review of methods, applications and data
sources. Information Fusion 63, 256–272.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C., 2018.
Mobilenetv2: Inverted residuals and linear bottlenecks, in: Proceedings
of the IEEE conference on computer vision and pattern recognition, pp.
4510–4520.

Shi, Y., Liu, L., Yu, X., Li, H., 2019. Spatial-aware feature aggregation
for image based cross-view geo-localization. Advances in Neural
Information Processing Systems 32.

Van Westen, C., 2000. Remote sensing for natural disaster management.
International archives of photogrammetry and remote sensing 33, 1609–
1617.

Vivanco Cepeda, V., Nayak, G.K., Shah, M., 2024. Geoclip: Clip-inspired
alignment between locations and images for effective worldwide geo-
localization. Advances in Neural Information Processing Systems 36.

Vo, N.N., Hays, J., 2016. Localizing and orienting street views using
overhead imagery, in: Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11–14, 2016, Pro-
ceedings, Part I 14, Springer. pp. 494–509.

Voorhees, E.M., 1985. The cluster hypothesis revisited, in: Proceedings
of the 8th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, Association for Computing
Machinery, New York, NY, USA. p. 188–196. URL: https://doi.org/
10.1145/253495.253524, doi:10.1145/253495.253524.

Wang, Z., Mai, G., Janowicz, K., Lao, N., 2024. Mc-gta: Metric-constrained
model-based clustering using goodness-of-fit tests with autocorrela-
tions. arXiv preprint arXiv:2405.18395 .

Weng, L., 2021. Contrastive representation learning. lilianweng.github.io
URL: https://lilianweng.github.io/posts/2021-05-31-contrastive/.

Werner, M., Li, H., 2022. Atlashdf: an efficient big data framework for
geoai, in: Proceedings of the 10th ACM SIGSPATIAL International
Workshop on Analytics for Big Geospatial Data, pp. 1–7.

Weyand, T., Kostrikov, I., Philbin, J., 2016. Planet-photo geolocation with
convolutional neural networks, in: Computer Vision–ECCV 2016: 14th
European Conference, Amsterdam, The Netherlands, October 11-14,
2016, Proceedings, Part VIII 14, Springer. pp. 37–55.

Wikipedia, 2023. the 2023 turkey and syria earthquakes. URL: https:

//wiki.openstreetmap.org/wiki/2023_Turkey_Earthquakes.
Workman, S., Souvenir, R., Jacobs, N., 2015. Wide-area image geolo-

calization with aerial reference imagery, in: Proceedings of the IEEE
International Conference on Computer Vision, pp. 3961–3969.

Zhai, M., Bessinger, Z., Workman, S., Jacobs, N., 2017. Predicting ground-
level scene layout from aerial imagery, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 867–875.

Zhang, F., Wu, L., Zhu, D., Liu, Y., 2019. Social sensing from street-
level imagery: A case study in learning spatio-temporal urban mobility
patterns. ISPRS journal of photogrammetry and remote sensing 153,
48–58.

Zhang, F., Zhou, B., Liu, L., Liu, Y., Fung, H.H., Lin, H., Ratti, C.,
2018. Measuring human perceptions of a large-scale urban region using
machine learning. Landscape and Urban Planning 180, 148–160.

Zheng, Z., Wei, Y., Yang, Y., 2020. University-1652: A multi-view multi-
source benchmark for drone-based geo-localization, in: Proceedings of
the 28th ACM international conference on Multimedia, pp. 1395–1403.

Zhou, Z., Zhang, J., Guan, Z., Hu, M., Lao, N., Mu, L., Li, S., Mai, G.,
2024. Img2loc: Revisiting image geolocalization using multi-modality
foundation models and image-based retrieval-augmented generation, in:
ACM SIGIR 2024.

Zhu, S., Shah, M., Chen, C., 2022. Transgeo: Transformer is all you need
for cross-view image geo-localization, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 1162–
1171.

Zhu, S., Yang, T., Chen, C., 2021. Vigor: Cross-view image geo-localization
beyond one-to-one retrieval, in: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 3640–3649.

Zhu, Y., Yang, H., Lu, Y., Huang, Q., 2023. Simple, effective and general:
A new backbone for cross-view image geo-localization. arXiv preprint
arXiv:2302.01572 .

Li et al.: Preprint submitted to Elsevier Page 15 of 15

https://doi.org/10.1145/253495.253524
https://doi.org/10.1145/253495.253524
http://dx.doi.org/10.1145/253495.253524
https://lilianweng.github.io/posts/2021-05-31-contrastive/
https://wiki.openstreetmap.org/wiki/2023_Turkey_Earthquakes
https://wiki.openstreetmap.org/wiki/2023_Turkey_Earthquakes

