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Abstract—This paper presents the vision of an adaptive radio
frequency (RF) communication signal processing pipeline solely
composed of machine learning domain operations, aiming to
provide a fully hardware-accelerated alternative to dedicated RF
chips. A hybrid architecture, comprising elements of classic signal
processing and learnable algorithms trained in an end-to-end
manner, is proposed, that is compatible with contemporary ML
hardware accelerators. The RF-ML pipeline, including speed-up
optimization modifications, are explained in detail, followed by
a brief description summarizing the deployment workflow of the
end-to-end system on a pair of AI-enabled space-grade FPGAs.
Finally, a bit-error-rate performance study of the simulated
system as well as a HW-deployed setup including software-
defined radios (SDR) validates the concept, followed by a detailed
throughput benchmark over multiple AI-accelerator hardware
configurations. Finally, we raise questions regarding practical
implementation, such as receiver synchronization, restrictions of
the ML-accelerator feature space, and weight quantization, which
are discussed at the end of this paper.

Index Terms—signal processing, physical layer, machine learn-
ing, hardware acceleration, fpga, software-defined radio

I. INTRODUCTION

Today’s requirements on communication systems might not
be the same as tomorrow’s. This is best understood by the ex-
ample of the 5G NR mobile communication standard. Starting
from its initial version (Rel. 15) in 2017, new iterations are
continuously passed that comprise changes/extensions to the
physical layer. With Release 18 expected to pass at the end of
2023, it is clear, that at this rate of updates the broad majority
of users cannot keep up with state-of-the-art equipment, hence,
being ”outdated” has become the new normal. This lack of
technological advancement in the communications field can
be traced back to hardware, specifically to specialized RF-
chips or -ASICs not being upgradable w.r.t. physical layer
modifications, making devices obsolete on a yearly basis. This
conflicts heavily with the idea of sustainability. We envision
to change this by combining the idea of a re-programmable
physical layer hardware with the current mega-trend of ma-
chine learning and its available hardware accelerators. By
not only exploiting the idea of augmenting the RF-pipeline
with AI-algorithms, but also using the available AI-hardware
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accelerators for power-efficient and high-speed computation,
we propose a system design that can combines various poten-
tial RF performance gains over traditional systems as shown
in [1]–[4] with physical layer flexibility and adaptability
unknown to compact mobile devices.

This paper builds on the idea of a learned communications
system as proposed by O’Shea et al. [1] in 2017, which
sparked the interest of applying machine learning in the RF
communications field. Follow-up works primarily focused on
extending the system’s capabilities, e.g., bit-wise autoencoder
[3], multiple antenna system [5], multi-carrier modulation
schemes such as OFDM [6], neural equalization [7], graph
neural network-based channel decoding [8], etc. However,
all systems were either proposed in simulation or realized
on impractical GPU-accelerated systems to fulfil computa-
tional demands, leaving the idea of AI-based communication
practically infeasible for resource restricted platforms. The
main contributions of this paper are the following: We aim
at closing the gap between computer simulations and practical
deployment by realizing a practically feasible non-GPU based
hardware setup that builds on a power-efficient FPGA-based
AI accelerator, but can be generalized to any compatible AI
accelerator. Furthermore, we demonstrate continuous commu-
nication with our autoencoder implementation.

The rest of this paper is structured as follows: Section II
details the designed RF-ML pipeline including the end-to-
end training strategy for its learnable components. Section III
briefly introduces the AI-optimized FPGA platform and its
workflow including necessary modifications for transforming
the generic NN model to a hardware compatible form. Val-
idation of the proposed system, including a detailed BER-
and throughput-performance benchmark, by using software-
defined radios as RF-frontend to the FPGA platform is detailed
in Section IV. Lastly, Section V concludes this work and
discusses discovered challenges for future work.

II. SYSTEM MODEL

This work assumes a single-input single-output (SISO) sys-
tem model with single-carrier modulation. The objective of the
system is to transmit a continuous stream of binary data uni-
directional from the sender to the receiver through a RF com-
munications channel. This involves performing common signal
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Fig. 1. System architecture of an AI-based hardware-accelerated (FPGA-based) RF-communication system. (a) Autoencoder-based NN implementation;
(b) HW-accelerated deployment strategy. Dataflow from left to right. Transmitter-side: Binary data is encoded by an outer encoder implemented as soft-
IP (yellow); encoded data is processed by HW-accelerated Transmiter-NN (green); output is propagated to RF-Frontend. Receiver-side: RF-Frontend sends
received I/Q-samples to HW-accelerated Receiver-NN (purple); demapped LLRs are decoded by outer decoder implemented as soft-IP (yellow).

processing steps such as Coding, Modulation, Up-sampling,
and Pulse-Shaping to generate the physical-layer baseband RF
signal on the transmitter side, as well as their respective inverse
operations to retrieve the transmitted information from the re-
ceived signal on the receiver side.1 Since this work envisions to
perform all prior mentioned steps fully within the ML-domain,
those steps are framed in the so-called ”RF-ML Pipeline” as
depicted in Fig. 1, which is a single neural network comprising
different layers performing those tasks. We note, that coding
and decoding is not implemented within the neural network
as it suffers of the curse of dimensionality as discussed in
[8]. Instead, it is implemented as pre- and post-processing
steps by utilizing an Intellectual Property (IP) block2 deployed
on the Programmable Logic (PL). We differentiate between
trained, i.e., (De-)Modulation, and non-trained, mathematical,
i.e., Up-sampling and Filtering, components. The system is
implemented using a bit interleaved coded modulation (BICM)
auto-encoder, hence training is performed in an end-to-end
(E2E) manner by minimizing the total binary cross entropy
between input- and output-bits as follows, resulting in a Bit-
Error-Rate (BER) minimization [3]:

L(θM , θD) : =

m∑
j=1

E[H(pθM (bj |y), p̃θD (hj |y))] (1)

=

m∑
j=1

E y,bj [−log pθM (bj |y)] (2)

1Note: For our hardware experiment we assume a synchronized system
by hard-wiring the local oscillators of both transmitting and receiving RF-
Frontends, therefore synchronization procedures are out of scope for this work.

2LDPC Encoder / Decoder: https://www.xilinx.com/products/intellectual-
property/ef-di-ldpc-enc-dec.html

pθM (bj |y) denotes the probability of the jth output-bit, which
is obtained by applying the sigmoid function to the cor-
responding logit. An artificial channel layer functions as a
bottleneck by restricting the amount of information conveyed
with one channel use (symbol), forcing the system to adapt
it’s properties (here: symbol constellation).

Following the training of the system, the channel layer
is removed and the NN is split into TX (green) and RX
(purple) parts as depicted in Fig. 1, which are then individually
deployed on the ML hardware accelerator on both devices.
Concatenation of outer (de)-coding completes the RF pipeline.

The following subsection explains the NN realisation of
these computation steps in detail:

A. Neural Network RF-ML Pipeline Implementation
Fig. 2 visualizes the E2E data-flow through the processing

chain from input bits to RF-signal and backwards.
1) First, the (coded) input bit-stream is modulated by map-

ping sub-vectors b of length m to a complex baseband
symbol c by using a Dense Neural Network (DNN),
also known as fully-connected dense layers. Hence, the
DNN implements the parametrized function fM (θM , b)
performing the mapping fM : {0, ..., 2m−1} 7→ C with
trainable parameters θM , resulting in modulation order
m. In practice, two real-valued outputs are produced
for one complex number. The required depth and inner
size of the network depends on m and the constellation
shape complexity. A shift from sequential to batch-wise
modulation, e.g., to boost throughput, is achieved by
formulating the DNN operations using equivalent con-
volutional (CNN) operations, which allows for spatial
parallelism in two dimensions, resulting in a modulated
output tensor M ∈ RNxxNyx2.



2) Up-sampling of the baseband symbols M with
upsampling-factor uTX in the dimension of sequential
symbols (here: x-direction) is achieved by applying
a transpose depth-wise 2D-convolution with one-hot
kernel = {1, 0, ..., 0} ∈ NuTXx1 and stride uTX, resulting
in an output tensor U ∈ R(NxxuTX)xNyx2.

3) Finally, transmit-pulse shaping is achieved by applying
a depth-wise 2D convolution with ”same”-padding and
odd-length kernel k ∈ Rlx1 (filled with filter coeffi-
cients, e.g., root-raised-cosine) on U, resulting in the
I/Q sample tensor O ∈ R(NxxuTX)xNyx2.3 Nx and Ny

can be considered hyper-parameters to the RF-ML-
Pipeline, since they both effect the numerical results of
the filtering operation and also the underlying degree of
compute parallelization, hence, achievable throughput.

Lastly, the tensor is flattened in the direction of sequential
samples and then fed to the RF-Frontend.

On the receiver side, in principle the same operations are
performed in an inverse manner. RX processing works on
a sampled signal tensor R ∈ R(NxxuRX)xNyx2 using an up-
sampling factor of uRX in the receiving RF-Frontend.

1) First, the received samples will be filtered using a
matched-filter by applying the same operation as in 3)
in the transmitter-side on R.

2) The filtered samples are down-sampled by factor uRX
by applying a depth-wise 2D-convolution with stride
uRX and one-hot kernel of length uRX, with the 1 at the
position corresponding to the symbol-centered sample.

3) Demodulation from a symbol-centered I/Q-sample s to
a Log-Likelihood-Ratio (LLR) vector l of length m
is performed using a DNN implementing the function
fD(θD, s), with fD : s 7→ Rm. Similarly as in 1) in
TX-side, a CNN is used to perform the same operation
in parallel, resulting in a LLR tensor L ∈ RNxxNyxm.

The LLR tensor is then flattened and fed to the decoder.

B. Training

The auto-encoder system is trained using a variant of
stochastic gradient descent (Adam). The training parameters
are summarized in Tab. I.

TABLE I
TRAINING PARAMETERS

Parameters Value
Loss Binary Cross Entropy
Num. Epochs 25.000
Batch-Size 1000 bits
Training Algorithm Adam
Learning rate starting at 10−1 and decreasing by

/5, /10, /100, /1000 every 5000 epochs
Training SNR Fix per constellation
Weight Initialization Glorot

3We want to note, that pulse-filtering using a 2D-convolution does not
exactly replicate the original operation working on a 1D data array, since
the convolution is not performed in one run, but on Ny slices of the data.
This results in small dissimilarities in the neighborhood of every Ny samples
whose consequences are discussed in chapter IV.
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Constellation energy normalization is performed after the
modulator and is not inherently learned by the DNN, since
no additional constraint (e.g., impact of energy on the loss)
is applied. For long-term training this leads to an exploding
output-range of the modulator. Similarly, symbol centering is
applied outside the DNN, leading to a non-negligible offset to
the DNN’s output. These effects have to be taken into account
for quantization and HW-model compatibility, as described in
Sub-section III-D.

III. ALGORITHM DEPLOYMENT

This section provides an overview of the utilized AI-
accelerated hardware platform and its deployment process on
which the prior introduced RF-ML pipeline is later bench-
marked. Remarks regarding compatibility issues and necessary
modifications conclude this section.

A. AI-Accelerator overview: AMD-Xilinx Versal

The Versal platform of the manufacturer AMD-Xilinx
presents a powerful series of embedded System-on-Chips
(SoC) that target a multitude of different computational-
demanding embedded tasks, with a particular focus on high-
speed ML inference [9]. The Versal AI Core series is one
of the state-of-the-art ML hardware accelerators, featuring a
novel architecture by combining three different computing
paradigms, i.e., processing system / CPU (PS), programmable
logic (PL) / FPGA, and a third class of vector compute
engines. In the context of ML, these compute engines are
referred to as AI-Engines and carry the main computational
workload. This work utilizes the VCK190 development board,
which ships with 400 AI-Engines. Fig. 3 provides a coarse
overview over its computing resources.

To exploit full capabilities of all computing resources in
concert, the manufacturer provides a generic inference ac-
celerator in the form of an IP block to be synthesised and
deployed on the Versal, as well as a tool-chain to compile
deep-learning models from standard formats such as HDF5
and ONNX to hardware-suitable instructions. The interplay of
both tools and their deployment workflow is described in the
following subsection.

PROGRAMMABLE I/O

Scalar Engines Adaptable Engines Vector Engines

Programmable Network-on-Chip

Memory Interface, I/O, Communication, Miscellaneous

Cortex-A72 (2x)
Cortex-R5F (2x)

#LUTs: 900k
#Flip-Flops: 1.8M
#DSP-Slices: 1.97k

#Engines: 400

Fig. 3. Computing resources on the Versal platform, comprising scalar (CPU),
adaptable (FPGA), and vector (AI-optimized) engines.

B. Generic Inference Accelerator

The generic inference accelerator, from now on also referred
to as Deep-Learning Processor Unit (DPU), can be described
as a microcoded co-processor with an instruction set optimized
for NN inference. The IP is able to execute various ML-
architectures dynamically by loading compiled model-files and
updating the computation pipeline on PL and AI-Engines
on-the-fly without any reprogramming. Configuration options
exists that allow trading of its compute power (e.g., through
the underlying level of parallelism) vs. hardware resource
utilization. In this work, various configurations regarding hard-
ware utilization of the FPGA, num. of AI-Engines, and batch
parallelism are analyzed regarding achievable performance.
Tab. II summarizes the considered configurations.

TABLE II
ANALYZED DPU HARDWARE UTILIZATION CONFIGURATIONS.

Configuration Freq.a FPGA AIE Batch Int-8 Perf
[MHz] [%] [#] [#] [TOPS]

C32B1 325/1250 6% 32 1 10.24
C32B3 325/1250 15% 96 3 30.72
C32B5 325/1250 24% 160 5 51.20
C64B5b 325/1250 26% 320 5 102.4
aFrequency of PL / AI-Engines
bMaximum Performance Configuration

C. Deployment Workflow

The Deep-Learning Processing Unit expects a hardware-
compatible model for inference. This subsection summarizes
the steps for transforming a generic ML model to a hardware
executable one using the tool-chain Vitis-AI. The deployment
workflow can be divided into three categories.

a) Compatible ML Application: The DPU executes ML
operations jointly on PL and AI-Engines in a highly efficient
and hardware-tailored manner, hence only a subset of opera-
tions is supported [10]. To guarantee computation fully within
the DPU, it is strictly necessary to ensure compatibility of the
designed AI application to the DPU. Both operation type and
parameters (e.g., kernel size, padding) are limited. However,
unsupported features can also be executed on the PS, which
in turn requires the exchange of intermediate data between
DPU and PS, imposing a noticeable performance penalty to
the application.

b) Model Quantization: DPU inference is based on 8-bit
fixed-point computation, since FPGA-based systems benefit
from a lower power-consumption, latency [11], and hardware
complexity by realizing fixed-point units compared to floating-
point units. Even though the AI Engines support floating-
point based vector operations, fixed-point computation is more
efficient due to their particular high Int-8 compute performance
[12]. Vitis-AI performs 8-bit quantization of inputs, weights,
biases, and activations after training using a power-of-two
quantization scheme, a special form of quantization well-suited
for FPGAs [13]. While this scheme is referred to as Post-
training quantization (PTQ), it is also possible, though not used
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in this work, to perform Quantization-aware training (QAT),
where the model is further trained by emulating inference-time
quantization, creating a more robust model.

c) Model Compilation: Finally, the quantized NN is
compiled into DPU-compatible instructions by invoking the
Vitis AI Compiler. This generates a program consisting of
quantized data and microcode for the DPU, which can be
loaded from the file system into memory and transferred to
the co-processor.

D. Model compatibility adaptation

The proposed RF-ML pipeline NN implementation as de-
picted in Fig. 2 is operation-wise fully compatible with the
feature support of the DPU. However, limitations w.r.t. param-
eters, e.g., kernel dimensions of w, h ∈ {1, ..., 15}, wxh ≤ 64
for 2D-convolutions, apply, which can result in degraded
system performance (here: restricting filter taps to a maximum
of 15). Circumventing these limitations can pose significant
implementation challenges. In this work, the kernel length
limitation has been overcome by splitting the original filter into

multiple, smaller filters and concatenating the partial results
Moreover, quantization strategies can require zero-centered
outputs to exploit full Int-8 bit-width. Hence, the mapper
DNN’s output offset, as described in Sub-section II-B, is
compensated by manually adjusting the bias of its last layer.

IV. SYSTEM VALIDATION AND PERFORMANCE ANALYSIS

In this section we validate the functionality of the pro-
posed RF-ML pipeline in simulation and on hardware through
comparison to its ”equivalent” classic implementation for
various combinations of both hyper-parameters Nx and Ny .
Additionally, the processing capabilities and implementation
efficiency of the NN on the Versal platform w.r.t. throughput
are benchmarked for a variety of hardware configurations and
compared to a modern GPU-based setup.

To analyze the BER performance of multiple configurations
of the RF-ML-Pipeline over a suitable signal-to-noise power
range, we implement both AI-based and classic baseline
systems with modulation order m = 4, wrap them inside a
Low-density parity-check (LDPC) encoder-decoder pair with



code-rate cr = 1
2 and codeword length cl = 80 if applicable,

and train them to specific SNR values each. For pulse-shaping
and matched-filtering a root-raised-cosine (RRC) filter with
roll-off-factor β = 0.22 and odd length spanning 22 symbols
is used with up-sampling factors uTX = uRX = 2. Mapper and
demapper are 1-hidden layer DNNs with 128 neurons each.
The classic systems are modeled using the Sionna framework
[14]. The results are displayed in Fig. 4.

Fig. 4(a) visualizes the learned constellations (black dots)
and the corresponding demapper decision regions (area: quan-
tized; white line: unquantized) as a function of the SNR. It can
be seen that the match of quantized and unquantized decision
regions is good, however, differences exist that will result in
misclassification, degrading quantized performance slightly.

Fig. 4(b) denotes the BER ratio of the uncoded HW-
deployed RF-ML-Pipeline (with two Ettus X300 USRPs over
a coaxial-cable channel) vs. simulated ”classic” baseline as
a function of the hyperparameters Nx and Ny and the SNR.
While the HW-deployed performance is always worse than
the simulated classic implementation, the ratio shows a strong
dependency on the hyperparameters, decreasing approximately
symmetrically with the increase of either one. This effect is
caused by the data anomaly introduced by the ”row-wise”
filtering and concatenation operation in the TX- and RX-NN,
introducing a systematic numerical error compared to classic
filtering, leading to a decreased BER. This impact shows a
high correlation with the SNR. Moreover, for high SNRs Nx

has a stronger impact than Ny , which is simply caused by the
fact that the numerical error can be eradicated by increasing
the filter-row’s length, i.e., Nx, to infinity.

Fig. 4(c) compares the BER-curves of simulations for
various system configurations that can be divided in three
categories: No-coding (solid) vs. coding (dotted), RF-ML-
Pipeline computation (Nx = Ny = 256, red, thick) vs.
classic computation (black), and learned mapping/demapping
(opaque) vs. standard 16-QAM (semi-transparent). Firstly, the
choice of constellation does not noticeable impact the perfor-
mance, verifying the learned constellation’s quality. Secondly,
one can observe the RF-ML-Pipeline’s BER degredation for
high SNRs caused by the above described systematic error.
Coding mitigates this issue only partially as visible for SNRs
between 8-10 dB. This might be caused by the distribution of
bit errors caused by the systematic numerical error, which is
not uniform but exhibits spikes at a repeating rate determined
by Nx. Lastly, the BER curve of the HW-deployed system is
denoted by the star-marked line for comparison.

Finally, Fig. 4(d) shows throughput performance in MBit/s
of the RF-ML-Pipeline implementation on the Versal AI-
accelerator for multiple hardware configurations as a function
of the number of bits processed per batch. Since multiple
combinations of Nx and Ny can yield the same total paral-
lelization, only the best performing value is chosen. The ver-
tical lines for batch-size 1 configuration denote the respective
throughput ranges for a given parallelization factor. A strong
correlation to the degree of parallelization is observed. Both
TX- and RX-NN perform similar, as they feature the same type

of operations. RX-NN is slightly slower, which can be traced
back to different data load and store speeds of the DPU. An
increase in the batch-size is reflected on the throughput with
a mean increase by factor 2.3 for 1 → 3 and 3.0 for 1 → 5.
Surprisingly, increasing the AI-Engines from 32 to 64 for the
batch-size 5 configuration only yields a 1.4% throughput gain.
In general, throughput saturates for high parallelization values,
topping out at 116 MBit/s. For comparison, GPU throughput
performance of a NVidia V100 (AWS ml.p3 instance) for
batch-size 1 is denoted by the red line, and exhibits a linear
performance with a maximum of 6.8 GBit/s.

V. CONCLUSION AND FUTURE WORK

In this work we proposed and implemented our vision of a
flexible, reconfigurable physical layer for RF communications
through the use of generic AI hardware accelerators. The per-
formance analysis w.r.t. BER shows promising results but hints
improvements both for NN implementation and hardware-
tailored deployment (e.g., quantization-aware training), indi-
cating the necessity for follow-up work. Moreover, extending
the RF-ML-Pipeline’s capabilities, e.g., synchronization pro-
cedures, channel equalization, etc., is required for practical
operation. Lastly, exploring the landscape of RF-targeted AI-
accelerators, e.g., the Versal RF SoC, is subject of future work.
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