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ABSTRACT
The recent advance of adapting pre-trained task-agnostic artificial
intelligence (AI) models leads to great successes in downstream
tasks via fine-tuning, or low-resource (i.e., few-shot and zero-shot)
learning. However, when adapting such pre-trained AI models to ge-
ographical applications, it is still challenging to find the "sweet spot"
of the model’s generalizability and specializability (e.g., geographic
generalizability v.s. spatial heterogeneity). For instance, a building
detection task may require vision models with different parameters
across different geographic areas of the world. In this paper, we
rethink this interesting topic, namely Geographical Generalizability
of GeoAI models, with a case study of detecting OpenStreetMap
(OSM) missing buildings across different countries in sub-Saharan
Africa. We consider a real-world scenario, in which we first train a
Single-Shot Multibox Detection (SSD) base model for OSM missing
building detection in Kakola, Tanzania, where a previous humani-
tarian mapping project of OSM was organized to map all possible
buildings. Then we extrapolate this base model using Few-Shot
Transfer Learning (FSTL) to a set of areas in the proximity of the
test area in Cameroon. Here, we develop a Geographical Weighted
Model Ensemble (GWME)method to improveGeographical General-
izability of GeoAImodels. Moreover, we compare four unsupervised
model ensemble weighting strategies: 1) Average weighting, 2) Im-
age similarity weighting, 3) Geographical distance weighting, and
4) Self-attention-based weighting. Experiments show promising
results of the proposed GWME method, which implicitly generates
model weights from their location embedding and image feature
embedding in an unsupervised manner. More specifically, the self-
attention-based model ensemble achieves the highest performance.
The results shed inspiring light on improving the generalizability
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and replicability of GeoAI models across geographic areas. Data
and code are available at https://github.com/tum-bgd/GWME.
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1 INTRODUCTION
As one of the fundamental principles of GIScience, spatial het-
erogeneity refers to the phenomenon that the expectation of a
random variable varies across the Earth’s surface [1]. In social and
environmental science, we may observe spatial heterogeneity in
both the relevant variables and confounding variables of the dis-
covery process. Because of these phenomena, in many geospatial
artificial intelligence (GeoAI) studies, one often encounters difficul-
ties in replicating the results of the study to other areas that may
or may not overlap with the original area without a significant per-
formance decrease[16]. For example, a common scenario in GeoAI
research is that a deep learning model pre-trained in a specific area
may perform poorly in other geographic areas. Meanwhile, spatial
autocorrelation, as stated in Tobler’s First Law of Geography, may
limit the applicability of knowledge learned from a certain training
area only to their geographic proximity, which again hinders a
seamless model transfer across space [15]. Herein, the ability of a
GeoAI model to replicate or generalize the model’s prediction abil-
ity across space is called geographical generalizability [30, 32],
which is also coined as replicability across space [16].
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Meanwhile, in the AI domain, the discussion about the gener-
alization and specialization capability of AI models has a long
history [2]. While it is desired that a model can effectively learn and
solve a specific task, i.e., specializing a model to a certain extent, a
model may also be over-specified, so-called overfitting. To avoid
this, numerous efforts have been made toward better generalized
models for example by improving the gradient descent optimization
procedure [17], creating large-scale labeled datasets (e.g., ImageNet
[7]), developing a more powerful AI architecture like the Trans-
former family [11, 43], or meta-learning techniques [37]. Although
higher generalizability is preferred in most AI applications, spa-
tial phenomena (e.g., spatial heterogeneity and autocorrelation)
bring an additional scenario for AI applications in which one needs
to find the balance between generalizability and specialization of
GeoAI models, especially when aiming at large-scale applications
across space. However, finding this "sweet spot" of geographical
generalizability is a challenging task.

In the existing works, there are mainly three ways of tackling
this geographic generalizability problem. The first common prac-
tice is to partition the space into different regions based on the
underlining data process and learn separated models for different
regions [50, 54]. The drawback of this practice is the large num-
ber of model parameters required for different geographic areas.
The second common way to solve this is to apply transfer learn-
ing across space, such as urban-to-rural transfer [12], city-to-city
transfer [44], country-to-country transfer [23], and so on. In a third
stream, early attempts seek to integrate representation learning
methods (e.g., location encoding) into a range of GeoAI applications,
e.g., place recognition [52], trajectory prediction [51], point cloud
segmentation [36], and geo-aware image classification [29, 34, 35],
where spatial locations are represented (or encoded) into a high-
dimensional embedding space to capture the spatial heterogeneity
across space in order to facilitate downstream learning tasks. For
a review of location encoding in GeoAI, please refer to [33]. More
recently, the concept of position/location encoding has achieved
superior performance in general AI tasks along with the popularity
of Transformer and Vision Transformer models [5, 11, 43], where
a self-attention mechanism is adopted to capture the relation-
ships between the different elements (e.g., words, image patches,
video blocks) of the same sequence/frame (e.g., sentence or image).
Inspired by these observations, we ask whether we can simultane-
ously benefit from transfer learning and representation learning to
improve the generalizability of GeoAI models across space.

In this paper, we rethink the geographical generalizability prob-
lem and propose to solve it by developing an unsupervised self-
attention model ensemble method, namely Geographical Weighted
Model Ensemble (GWME). An interesting case study of detecting
OpenStreetMap (OSM) missing buildings across different counties
in sub-Saharan Africa is conducted to demonstrate the effective-
ness of GWME. The overall method is illustrated in Figure 1. Our
general assumption is that although the target area is completely
missing in OSM, it is still possible to find some nearby areas with a
small number of training samples, which is useful to help improve
the performance of the base model (M𝑏𝑚) trained in a target test
area. We first train a base model M𝑏𝑚 on an OSM data-rich area
𝐴𝑏𝑚 (in Tanzania). And then we select a list of reference areas (𝐴 𝑗 ,
where 𝑗 = 1, 2 . . . ,𝑇 ) in the proximity of the test area (in Cameroon),

Figure 1: Overview of Geographic Weighted Model Ensemble
(GWME). Left: an example target area (Cameroon) and a data-
rich area (Tanzania), from which the base modelM𝑏𝑚 is pre-
trained. Right: a prediction in the target area is made by a
weighted ensemble of predictions made by the base model
few-shot transferred with examples from nearby reference
areas.

which is geographically far away from Area 𝐴𝑏𝑚 and consists of
very diverse landscapes and building structures. Next, we apply a
Few-shot Transfer Learning technique [23] to extrapolateM𝑏𝑚 to
those reference areas nearby the test area. After the FSTL, we now
have a list of less accurate models close to the targeted test area,
with which we seek to ensemble a more accurate model. Herein,
a modern pre-trained ViT model with DINO (pre-trained on Ima-
geNet) [5] is utilized to generate self-attention weights using an
image patch ensemble method across different FSTL areas by im-
plicitly considering their locations and image feature embeddings.
Since self-attention can be calculated directly from a pre-trained
model, the GWME is an unsupervised model ensemble method
to improve the model’s geographical generalizability for GeoAI
applications.

We conduct intensive experiments on different weighting strate-
gies with the proposed GWME method: 1) average weighting, 2)
image similarity weighting, 3) geographical distance weighting,
and 4) self-attention-based weighting. In this context, we elaborate
on the potential of GWME as a promising avenue to improve the
geographical generalizability of OSM missing building detection
models and even beyond.

2 RELATEDWORK
Herein, we discuss work related to the topic of replicating GeoAI
models across space in the context of our case study with OSM
missing building detection, which has recently gained increasing
research interest among the broader geospatial community. The
aim herein is to raise attention to a common problem of the model’s
geographical generalizability with an intuitive case study.

HumanitarianMapping with OpenStreetMap -As an emerg-
ing spatial dataset, OpenStreetMap (OSM) has been extensively
used to support humanitarian aid activities, especially in the Global
South [18], where successful examples include the mapping tasks
during the 2014 West Africa Ebola outbreak [10], the 2019 Cyclone
Idai and Kenneth in Mozambique [22], and the 2023 Turkey Syria
Earthquake [47]. Although the OSM data availability in the Global
South has been greatly improved via recent humanitarian mapping
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campaigns, large rural areas still remain unmapped. Moreover, con-
sidering the time-crucial nature of disaster responses and humani-
tarian aid, existing OSM mapping workflows become less efficient
and unsatisfactory in filling huge data gaps in OSM within a rather
short time. Fortunately, the emergence of high-resolution satellite
imagery allows for the augmentation and refinement of OSM data
with GeoAI techniques [38, 46], thus providing a promising solution
to address this challenge that humanitarian organizations currently
encounter. Early works in this direction [19, 20] report an interest-
ing finding on improving the speed and accuracy of humanitarian
mappings via a machine-assisted manner. However, a majority of
existing approaches rely on models trained in OSM data-rich areas,
which can be only applied to limited nearby areas. Therefore, one
key challenge for large-scale machine-assisted mapping in OSM is
how the GeoAI models can be effectively replicated in remote areas
with little or no OSM data.

Geospatial Object Detection - Recently, the ever-increasing
availability of multimodal Earth Observation (EO) data, including
Very High Resolution (VHR) images, Multispectral (MSI) imaging,
and Hyperspectral (HSI) imaging, offers a promising data source
for modern GeoAI models to automatic detection and map geo-
graphical objects, ranging from common objects like buildings to
those special objects such as planes or ships. Successful examples
of building detection include but are not limited to Global Urban
Footprint (GUF) [13] from German Aerospace Center, High Reso-
lution Settlement Layer (HRSL) [42] from the Connectivity Lab at
Meta, and the Google Open Building Layer (GOB) [39]. As another
example, researchers detected over 1.8 billion individual trees in
the West African Sahara, Sahel, and sub-humid areas from VHR
satellite imagery (i.e., sub-meter resolution) using a deep learning
method [3]. Although such GeoAI models offer an unprecedented
ability to monitor and map geospatial objects at scale, the lack of
large-scale training data has become a major bottleneck for the
advancement of geospatial object detection [9, 24, 48]. To mitigate
this effect, considerable effort has been dedicated to creating bench-
mark datasets for multi-class geospatial object detection, including
NWPU VHR-10 [6], DOTA [9], and FAIR1M [41]. Meanwhile, there
is an increasing interest in how one can leverage the knowledge
of existing GeoAI models pre-trained in different geographic re-
gions to achieve consistent geospatial object detection performance
without much additional training data.

Transfer Learning and Spatial Explicit AI -Modern advances
in GeoAI models and algorithms often benefit from two streams
of learning techniques. First, the concept of transfer learning has
been well-integrated into almost all state-of-the-art AI architec-
tures. Specifically, it is a common practice to pre-train vision models
on large-scale image datasets, like Microsoft COCO dataset [26],
ImageNet dataset [8], and PASCAL VOC dataset [14], which can be
fine-tuned in downstream tasks to achieve better generalization per-
formance. For example, Wang et al. [45] confirmed the effectiveness
of fine-tuning-based approaches on few-shot object detection with
a systematic analysis of the state-of-the-art benchmarks. Inspired
by this, Li et al. [23] proposed a model-agnostic Few-Shot Trans-
fer Learning (FSTL) method to improve the performance of OSM
missing building detection in Sub-Saharan Africa. Besides transfer
learning, a second stream of research goes to the representation
learning direction, where a location encoder is learned to improve

GeoAI model performance while preserving spatial information
(e.g., distance and direction) after the encoding process. Existing
works include approaches to learn a location representation from
image-location pairs for geo-localization [53] and to apply a dual-
encoder for the geo-aware image classification task [34, 35]. Herein,
an interesting topic is the so-called spatial explicit AI [21, 27, 31],
where the design of GeoAI models explicitly considers a range of
spatial concepts, spatial principles, and spatial inductive biases.
Previous works incorporate several important spatial principles,
such as spatial dependency [25], spatial heterogeneity [16, 29], and
temporal periodicity [4].

Inspired by existing research, we rethink the geographical gener-
alizability of GeoAI (e.g., geospatial building detection) models by
considering both transfer learning and representation learning with
an unsupervised self-attention model ensemble method. Moreover,
we use the task of OSM missing building detection in sub-Saharan
Africa as a case study, where GeoAI methods have shown great
potential in supporting humanitarian mapping activities at scale.

3 DEFINITION AND PRELIMINARIES
We assume an OSM-labeled training dataset for the base model
(BM) to be a triplet S𝑏𝑚 = {(x𝑖 , I𝑖 , y𝑖 )} with 𝑖 = 1, . . . , 𝑁 in OSM
data-rich area 𝐴𝑏𝑚 . Here, x𝑖 is a satellite image, y𝑖 is a set of object
bounding boxes (bbox) in this image, and I𝑖 refers to the location
(e.g., longitude and latitude) and optionally geographic distances to
the hold-out test dataset S𝑡𝑒𝑠𝑡 = {(x𝑖 , I𝑖 )} with 𝑖 = 1, . . . , 𝑀 . Then,
the BM is supervised pre-trained by optimizing the loss function L
via gradient descent, which is described as F (S𝑏𝑚) → M𝑏𝑚 , and
whereM𝑏𝑚 represents the BM for the GeoAI task (e.g., a building
detectionmodel trained in Tanzania). From here, we identify a list of
FSTL datasets S𝑗

𝑓 𝑠
= {(x𝑗

𝑖
, I𝑗
𝑖
, y𝑗

𝑖
)} with 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . ,𝑇

from 𝑇 reference areas 𝐴 𝑗 ( 𝑗 = 1, . . . ,𝑇 ) in the proximity of the
target test area 𝐴𝑡𝑒𝑠𝑡 . The FSTL can be then formulated as a similar
function F (S𝑗

𝑓 𝑠
) → M𝑗

𝑓 𝑠
, which gives us a set of FSTL modelsM𝑗

𝑓 𝑠

from distinct nearby areas 𝐴 𝑗 . Before we apply the GWME method,
we first conduct model forward inference, represented by P, in
the test dataset S𝑡𝑒𝑠𝑡 about the test area 𝐴𝑡𝑒𝑠𝑡 with different FSTL
modelsM𝑗

𝑓 𝑠
as follows:

FSP𝑗 =
⋃

(x𝑖 ,I𝑖 ) ∈S𝑡𝑒𝑠𝑡
P(M𝑗

𝑓 𝑠
, (x𝑖 , I𝑖 )) . (1)

Where {FSP𝑗 }𝑇
𝑗=1 refers to the corresponding set of predictions of

𝑇 models in the test area S𝑡𝑒𝑠𝑡 , where {M𝑗

𝑓 𝑠
}𝑇
𝑗=1 are a set of FSTL

models. For each FSTL model, the GWME method then jointly
considers their vision representation (x𝑗

𝑖
) and geographic locations

(I𝑗
𝑖
) with an explicit weighting functionW ∈ R𝑇×𝑀 in a tile-

based manner. Following, this generates a list of corresponding
weights w𝑗 which can be used in the final step of GWME, resulting
in predictions (P) and denoted as:

P =
𝑇∑︁
𝑗=0
Q(FSP𝑗 ,w𝑗 , th). (2)

Here, Q is a weighted boxes fusion [40] function and th repre-
sents the corresponding hyperparameters, such as the threshold of
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Figure 2: The extraction of self-attention-based weights for the GWME using a pre-trained ViT with DINO.

confidential scores. The general idea of the weighted boxes fusion
is visualized in Figure 3.

Therefore, the objective of measuring the model’s geographical
generalizability is achieved by minimizing the discrepancy be-
tween the GWME predictions (P) and the ground truth label (Y𝑡𝑒𝑠𝑡 )
of the test dataset S𝑡𝑒𝑠𝑡 . A more detailed description of the GWME
method and how it is implemented is given in Section 4.

4 METHOD
In this section, we present the proposed GWME method, which
aims to tackle the problem of the model’s geographical gener-
alizability, specifically with the OSM missing building detection
task.

4.1 Multiple Few Shot Transfer Learning
Given the base model of OSM missing building detection M𝑏𝑚 ,
we first implement the FSTL method [23] in order to learn a set
of similar models in the geographic proximity of the target test
area 𝐴𝑡𝑒𝑠𝑡 (as shown in Figure 1), where OSM building features are
entirely missing. With the so-called reference areas 𝐴 𝑗 , the FSTL
method results in a set of FSTL models {M𝑗

𝑓 𝑠
}𝑇
𝑗=1 as well as the

corresponding predictions of OSM missing buildings {FSP𝑗 }𝑇
𝑗=1.

Herein, the assumption is that although the target area is com-
pletely missing in OSM, it is still possible to find some nearby
areas with a small amount of "training shots". They can be used
to improve the performance of the base model (M𝑏𝑚) trained in a
geographically-remote area. Obviously, the performance of FSTL
models is still limited by factors, such as the amount of few-shot
samples and their distance to the target area, which are essential to
geographical generalizability. In this context, we seek to take
a step towards combining these FSTL predictions by establishing
an effective weighting strategy to do model ensembles with these
limitation factors in mind.

In the case study, we choose a commonly-used single-stage ob-
ject detector, specifically the Single Shot Multibox Detector (SSD)
[28], and deploy their pre-trained parameters fromMicrosoft COCO
dataset [26] as the backbone of all our OSM missing building detec-
tion models. After the base model training, we follow the multiple
FSTL and predictions algorithm (as shown in Algorithm 1) to ex-
trapolateM𝑏𝑚 to many less-accurate models {M𝑗

𝑓 𝑠
}𝑇
𝑗=1. For more

details about the FSTL approach, one can refer to [23].

Algorithm 1Multiple Few-shot Transfer Learning and Predictions
1: Input:
2: M𝑏𝑚 : the base model;
3: T: number of reference areas neighbouring the test area;
4: S

𝑗

𝑓 𝑠
= {(x𝑗

𝑖
, I𝑗
𝑖
, y𝑗

𝑖
)} with 𝑖 = 1, . . . , 𝑛 𝑗 and 𝑗 = 1, . . . ,𝑇 : FSTL

samples from reference areas;
5: M

𝑗

𝑓 𝑠
← {}: few-shot models fine-tuned on reference areas;

6: S𝑡𝑒𝑠𝑡 = {(x𝑖 , I𝑖 )} with 𝑖 = 1, . . . , 𝑀 : dataset from the test area;
7: FSP𝑗 , 𝑗 = 1, . . . ,𝑇 ← []; predictions from single FSTL models
8: for dataset S𝑗

𝑓 𝑠
of each reference area 𝐴 𝑗 in {S𝑗𝑓 𝑠 }

𝑇
𝑗=1 do

9: few-shot modelM𝑗

𝑓 𝑠
← F (S𝑗

𝑓 𝑠
, 𝜃 );

10: for each (x𝑖 , I𝑖 ) in S𝑡𝑒𝑠𝑡 = {(x𝑖 , I𝑖 )}𝑀𝑖=1 do
11: update FSP𝑗

𝑖
← P(M𝑗

𝑓 𝑠
, (x𝑖 , I𝑖 ))

12: end for
13: end for
14: Output:
15: FSP𝑗 : list of objects and scores predicted from reference few-

shot models;

4.2 Model Ensemble and Weighting Strategy
Now, we want to use GWME to ensemble 𝑇 few-shot learned mod-
els {M𝑗

𝑓 𝑠
}𝑇
𝑗=1 into the target area. The most important step is to
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decide the weights of each individual FSTL model (M𝑗

𝑓 𝑠
) during

model ensemble. Inspired by the lessons learned in spatial explicit
AI research, we develop an unsupervised method to learn model
ensemble weights by considering both image feature embedding
and location embedding with a self-attention mechanism. We call it
self-attention-based weighting (as shown in Figure2) and com-
pare it with three other weighting strategies. We elaborate on these
different weighting strategies as follows:

Figure 3: Examples of the weighted boxes fusion. (a) and
(c) multiple predicted boxes from different FSTL models
{M𝑗

𝑓 𝑠
}𝑇
𝑗=1; (b) and (d) the ensembled boxes.

AverageWeighting (𝑎𝑣𝑒𝑟𝑎𝑔𝑒)- In the simplest case, we consider
equal weights when combining the FSTL models. After selecting
the weights, we apply the weighted boxes fusion method [40] to
conduct a prediction-level ensemble of all FSP𝑗

𝑓 𝑠
as a proof-of-

concept. At the same time, future works are encouraged to explore
model-level weighted model ensembles.

{w𝑗 = 1} → FSP𝑗 (3)
Image SimilarityWeighting (𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦) -As a second weight-

ing strategy, it is intuitive to think about considering the similarity
of satellite images among the FSTL areas and the test area. There-
fore, we consider an average cosine similarity between the his-
tograms of satellite image pairs, namely x𝑗

𝑖
∈ S𝑗

𝑓 𝑠
and x𝑖 ∈ S𝑡𝑒𝑠𝑡 , as

a proxy of their image similarity weights (see Equation 4). Herein,
cos(·) indicates the cosine similarity function. 𝐻𝐼𝑆 (·) indicates a
function to compute the image histogram. 𝑛 𝑗 is the number of
few-shot data samples we used in S𝑗

𝑓 𝑠
in the 𝑗th FSTL areas 𝐴 𝑗 .

{w𝑗
𝑖
=

1
𝑛 𝑗

∑︁
(x𝑗

𝑖
,I𝑗
𝑖
,y𝑗
𝑖
) ∈S𝑗

𝑓 𝑠

cos(𝐻𝐼𝑆 (x𝑗
𝑖
), 𝐻𝐼𝑆 (x𝑖 )} → FSP𝑗 (4)

Geographical DistanceWeighting (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) - Given Tobler’s
First Law of Geography, we expect a similar object to be observed
if they are close to each other. To this end, we consider a reverse
distance weighting strategy for model ensemble, which is based
on the prior knowledge of their geographical locations, specifically
I𝑖 ∈ S𝑡𝑒𝑠𝑡 and the center of each S𝑗

𝑓 𝑠
. Equation 5 illustrates the

general idea where 𝐶𝐸𝑁 (·) indicates the geometric center of the

study area and 𝐷𝐼𝑆 indicates a distance function, e.g., Euclidean
distance, great circle distance, geodesic distance, and so on.

{w𝑗
𝑖
= 𝐷𝐼𝑆 (I𝑖 ,𝐶𝐸𝑁 (S𝑗𝑓 𝑠 ))} → FSP

𝑗 (5)

Algorithm 2 Geographical Weighted Model Ensemble (GWME)
1: Input:
2: M𝑉𝑖𝑇 : the pre-trained ViT model;
3: S

𝑗

𝑓 𝑠
= {(x𝑗

𝑖
, I𝑗
𝑖
, y𝑗

𝑖
)} with 𝑖 = 1, . . . , 𝑛 𝑗 and 𝑗 = 1, . . . ,𝑇 : FSTL

samples from reference areas;
4: S𝑡𝑒𝑠𝑡 = {(x𝑖 , I𝑖 )} with 𝑖 = 1, . . . , 𝑀 : dataset from the test area;
5: FSP𝑗 , 𝑗 = 1, . . . ,𝑇 : list of objects and scores predicted from

different models;
6: th: threshold of prediction score
7: P: ensembled objects and scores;
8: Mode: weighting mode;
9: w𝑗 : corresponding weights forM𝑗

𝑓 𝑠
.

10: WeightsW ← [];
11: for each (x𝑖 , I𝑖 ) in S𝑡𝑒𝑠𝑡 = {(x𝑖 , I𝑖 )}𝑀𝑖=1 do
12: for dataset S𝑗

𝑓 𝑠
of each reference area 𝐴 𝑗 in {S𝑗𝑓 𝑠 }

𝑇
𝑗=1 do

13: if Mode == "average" then
14: average weights w𝑗

𝑖
= 1;

15: else if Mode == "similarity" then

16: w𝑗
𝑖
=

1
𝑛 𝑗

∑
(x𝑗

𝑖
,I𝑗
𝑖
,y𝑗
𝑖
) ∈S𝑗

𝑓 𝑠

cos(𝐻𝐼𝑆 (x𝑖 ), 𝐻𝐼𝑆 (x𝑗 ));

17: else if Mode == "distance" then
18: w𝑗

𝑖
= 𝐷𝐼𝑆 (I𝑖 ,𝐶𝐸𝑁 (S𝑗𝑓 𝑠 ));

19: else if Mode == "attention" then
20: image patches patch_list[] ← x𝑖 ;
21: patch_list.𝑎𝑝𝑝𝑒𝑛𝑑_𝑝𝑎𝑡𝑐ℎ(x𝑗

𝑖
, I𝑗
𝑖
);

22: multi_heads_attentions = M𝑉𝑖𝑇 (patch_list);
23: attention_map =𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(multi_heads_attentions);
24: w𝑗

𝑖
= 𝑠𝑢𝑏𝑠𝑒𝑡 (attention_map);

25: end if
26: w𝑖 ← w𝑗

𝑖

27: prediction candidates FSP𝑖 ← FSP𝑗𝑖 ;
28: end for
29: W ← 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (w𝑖 );
30: update P𝑖 = Q(FSP𝑖 ,w𝑖 , );
31: end for
32: Output:
33: P: ensembled results and scores;

Self-Attention-Based Weighting (𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛) - As the most
interesting part, we develop an unsupervised method to learn self-
attention-based weight from a pre-trained ViT model – the Self-
Supervised ViT with DINO [5]. This model is pre-trained on Im-
ageNet. To adopt DINO into GWME, we design an image patch
ensemble approach according to their relative positions, where
the central image patch is taken from the test area and the con-
text image patches are taken from 𝑇 few-shot reference areas 𝐴 𝑗

( 𝑗 = 1, . . . ,𝑇 ) as shown in Figure 1. In other words, unlike the
original ViT which splits one single image into different patches,
we pick different image patches from different reference or target



SIGSPATIAL ’23, November 13–16, 2023, Hamburg, Germany Li, et al.

areas to form a big image (see Figure 2) and use relative position
embedding to capture their relative spatial relations.

{w𝑗
𝑖
= 𝑠𝑢𝑏𝑠𝑒𝑡 (𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑚𝑎𝑝)} → FSP𝑗 (6)

This approach is inspired by the relative position embedding
idea in the origin design of ViT. The advantage of this approach
is twofold: first, the self-attention-based weighting can simultane-
ously consider the location (via position embedding) and image
feature embedding (via patch image embeddings) for weighting;
second, the extraction of self-attention relies only on pre-trained
ViT and satellite image patches without any prior knowledge (e.g.,
geographical location, image source). In order to leverage the pre-
trained ViT weighted, we adopt the relative position encoding
method used by ViT and DINO [5]. Future work can extend this
method by explicitly encoding the patch’s geographic locations as
the patch position embeddings and fine-tuning the ViT model.

4.3 Put it All Together
To put everything together, the pseudocode of the complete GWME
is presented in Algorithm 2, where we start from multiple FSTL
model predictions as well as those FSTL datasets S𝑗

𝑓 𝑠
= {(x𝑗

𝑖
, I𝑗
𝑖
, y𝑗

𝑖
)}

with 𝑖 = 1, . . . , 𝑛, and end with the ensemble predictions together
with their confidential scores for OSM missing building detection
in the target test area.

To evaluate the proposed GWME method, we conduct intensive
experiments with our cast study of cross-country OSM missing
building detection in Sub-Saharan Africa by comparing the perfor-
mance of 1) the base modelM𝑏𝑚 and eight distinct FSTL models
{M𝑗

𝑓 𝑠
}𝑇
𝑗=1 and 2) four different weighting strategies with GWME.

In the following Section 5, we present the experimental results
together with the findings and insights in the direction of rethinking
the geographical generalizability of GeoAI models in a broader
scope.

5 EXPERIMENT RESULT
In this section, we examine the effectiveness of GWME in detecting
OSM missing buildings across different countries in sub-Saharan
Africa. In this context, we are particularly interested in how differ-
ent weighting strategies perform during the model ensemble.

5.1 Dataset and Evaluation Metrics
For our cast study, we take the dataset collected in [23], where a
well-mapped area in Tanzania is used to train the base model (M𝑏𝑚)
and a geographically remote area in Cameroon is selected as the
test area𝐴𝑡𝑒𝑠𝑡 who does not have any training samples. We identify
eight reference areas 𝐴 𝑗 with few-shot training samples for the
FSTL purpose around our test area 𝐴𝑡𝑒𝑠𝑡 (as shown in Figure 1).
More specifically, OSM buildings within the training area 𝐴𝑏𝑚 in
Tanzania were fully mapped during a humanitarian mapping cam-
paign organized by Humanitarian OpenStreetMap Team (HOT). For
the test area 𝐴𝑡𝑒𝑠𝑡 , since it is completely missing in OSM, we have
organized an expert mapping campaign and digitized in total 1,811
buildings within an 8.57km2 area in Cameroon as the reference
data. Table 1 gives the statistic of all datasets (i.e., train in Tanzania,
test in Cameroon, and FSTL areas in Cameroon). Moreover, We

provide the data and code used in this paper openly available in
https://github.com/tum-bgd/GWME.

Table 1: Summary statistic of the datasets.

Counts 𝐴𝑏𝑚 𝐴𝑡𝑒𝑠𝑡 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6 𝐴7 𝐴8

Buildings 6,272 1,811 66 45 116 46 71 61 40 79
Areas (km2) 232.50 8.57 0.35 0.16 0.35 0.22 0.34 0.44 0.25 0.20
Tiles 𝑛 𝑗 1,744 343 5 5 9 7 9 9 7 7

To generate the training data, we use the ohsome2label pack-
age [49] to combine OSM building geometries with Bing satellite
imagery at a zoom level of 18 (i.e., a spatial resolution of 0.6m),
then convert them to training datasets for the TensorFlow Object
Detection API 1. For the SSD [28], the pre-trained parameters are
downloaded from the TensorFlow Detection Model Zoo. The train-
ing process for the base model in Tanzania was run for 50,000
epochs, with an initial learning rate of 0.0004. The FSTL fine-tuning
epochs were then set to 10,000 for all reference areas. The algo-
rithms were implemented using Python 3.10, TensorFlow 2.2, and
TensorFlow object detection API on a Linux server with a GeForce
RTX 3080Ti graphical processing unit (GPU) of 12 GB memory.

For evaluation, we consider common metrics for a single-class
object detection task, such as Precision, Recall, Accuracy, and F1-
score. Specifically, we use a default IoU threshold of 0.5 as the
criteria to decide whether a prediction bounding box refers to a
building bounding box in the reference data, which then distin-
guishes all predictions into False Negatives (FN), False Positives
(FP), and True Positives (TP). There is no True Negative (TN), as
we are not interested in detecting non-building objects.

Table 2: Evaluation metrics of predictions from the base
model and single FSTL models on the test dataset. BM and
FSP𝑗 indicate the model predictions of the base modelM𝑏𝑚

as well as different FSTL models {M𝑗

𝑓 𝑠
}𝑇
𝑗=1.

Predictions Precision (%) Accuracy (%) Recall (%) F1

BM 97.66 13.71 13.75 0.2411
FSP1 99.00 60.90 61.27 0.7570
FSP2 96.94 68.93 70.46 0.8160
FSP3 98.18 53.06 53.58 0.6933
FSP4 98.22 49.06 49.50 0.6582
FSP5 98.44 61.27 61.87 0.7598
FSP6 84.65 40.90 44.18 0.5806
FSP7 99.12 52.66 52.91 0.6899
FSP8 98.73 52.60 52.96 0.6894
Mean(FSP𝑗 ) 96.66 54.92 55.84 0.7055

5.2 Geographic Weighted Model Ensemble
In Table 2, we evaluate to which extent our FSTL models {M𝑗

𝑓 𝑠
}𝑇
𝑗=1

can improve the performance of the base model M𝑏𝑚 on OSM
missing building detection task in the test dataset S𝑡𝑒𝑠𝑡 with a
1https://github.com/tensorflow/models/tree/master/research/object_detection

https://github.com/tum-bgd/GWME
https://github.com/tensorflow/models/tree/master/research/object_detection
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limited amount of geographically nearby training samples
("few-shot samples").

Herein, we found an overall significant accuracy improvement
of FSTL models over the base model, with so call𝑀𝑒𝑎𝑛(FSP𝑗 ), over
the base model. However, an interesting observation is that the
individual model performance varies a lot, where FSP4 leads to the
biggest improvement and FSP6 the lowest. Such a distinct behavior
implies the different levels of geographical generalizability among
a set of FSTL models.

Table 3 compares the performance of four different weighting
strategies with the proposed GWME method, where a threshold
of confidential scores (th) is set to ones with 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ≥ 95% as
shown in Figure 4. Several key findings can be observed. First, even
with average weighting, the model ensemble leads to a significant
improvement over all performances of single FSTL models, which
proves the effectiveness of GWME compared to the baseline model.
Second, although we assume that image similarities play a role,
image similarity weighting 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ends up with the least im-
provement in the model ensemble, while the simple reverse distance
weighting gives a surprisingly nice result (72,98% Accuracy and
0.84 F1). Last but foremost, we observe the biggest performance
improvement via the GWME method with self-attention-based
weighting 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛, which leads to more than 6% improvement in
overall accuracy and the highest Recall of 78.99% in the test area
𝐴𝑡𝑒𝑠𝑡 . In addition, the GWMEmethod outperforms the FSTL results
presented in [23] based on a similar reference dataset.

Figure 4: The curve of Precision and the threshold of confi-
dential scores in the GWME using different weighting strate-
gies.

In this context, we summarize the advantages of self-attention-
based weighting as twofold: 1) the self-attention map generated
from the pre-trained ViT with DINO can capture the general rela-
tive importance of model predictions across different image patches;
2) the position embedding in ViT can be equivalent (or even better
than) to the geographical reverse distance weighting while requir-
ing no prior knowledge (e.g., latitude and longitude) but only rela-
tive positions. The unsupervised nature of this self-attention-based
weighting 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 makes it a promising solution to the problem
of geographical generalizability, even beyond this case study of

Table 3: Evaluation metrics of predictions from ensembled
results by different weighting modes.

GWME Weightings Precision (%) Accuracy (%) Recall (%) F1

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 96.35 71.70 73.70 0.8352
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 95.68 71.16 73.52 0.8315
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 97.76 72.98 74.22 0.8438
𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 96.95 77.07 78.99 0.8705

building an ensemble of multiple object detection models, which in
principle, can be replaced with other GeoAI models.

5.3 Visual Interpretation
Our GWME method can effectively improve the geographical gen-
eralizability of GeoAI models in an unsupervised manner. In Figure
5, we compare evaluation metrics between the baseline method
(e.g., the base modelM𝑏𝑚 and the best single FSTL modelM4

𝑓 𝑠
) and

GWME results with different weighting strategies.

Figure 5: Performance of GWMEpredictions (precision > 95%)
using different weighting strategies.

To visually interpret the advantages of our GWME, Figure 6
compares the OSM missing building detection results of three dif-
ferent models: the base model M𝑏𝑚 , the single FSTL model M4

𝑓 𝑠
,

and the results from our GWME with self-attention-based weights
𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛. Comparing Figure 6 (b) and (c) with Figure 6 (a), we can
see a significant decrease in FN. Such a decrease in FN, originat-
ing from valid buildings that are overlooked by a model trained
in geographically remote areas, confirms our assumption that few-
shot learning is very effective to improve model performance in
geographically remote area. Comparing Figure 6 (c) with (b), we
see that our GWME with 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 further reduces the FN and
FP. This confirms the effectiveness of GWME in achieving better
geographical generalizability for GeoAI models.
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Figure 6: The comparison map of prediction results. (a) the
base model (M𝑏𝑚); (b) the single FSTLmodel (i.e.,M4

𝑓 𝑠
); (c) the

GWME result with self-attention-based weights 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛.

In future work, we aim to extend this method to multiple coun-
tries across Africa, even other continents, to support better and
faster humanitarian mapping with OSM by establishing a robust
and effective indicator of global OSM building completeness.

6 CONCLUSION
In this work, we proposed Geographical Weighted Model Ensemble
(GWME), an unsupervised model ensemble method to improve the
geographical generalizability of GeoAI models, with a case study
of cross-country OpenStreetMap (OSM) missing building detection
in sub-Saharan Africa. Based on existing methods of transferring
GeoAI models across geographical space, such as FSTL [23], we
develop a self-attention-base weighting for the GWME by simulta-
neously considering the location and image feature embedding for
weighting different FSTL models. More importantly, self-attention
can be intuitively learned from a pre-trained ViT model with DINO
without prior knowledge (e.g., geographical locations) in a fully
unsupervised manner. For comparison, we consider three other
weighting strategies: 1) average weighting, 2) image similarity
weighting, and 3) geographical distance weighting. To evaluate
the effectiveness of GWME, we conduct intensive experiments with
a cast study of OSM missing building detection, where the base
model is trained in Tanzania, and the test area is in Cameroon.
Experimental results confirmed the capability of GWME with the
self-attention-based weighting which can outperform both the base
model and single FSTL model with more than 6% accuracy improve-
ment over the best single FSTL model.

Despite the promising results, we identify several limitations
and future work directions with this case study. For instance, we
use a prediction-level model ensemble as a proof-of-concept, while
a parameter-level model ensemble can be preferred by considering
the computational efficiency. Also, our reference areas are still in
proximity to the test area. Thus, our future work will extend this

into a larger scale study area for more aggressive improvement of
geographical generalizability. Moreover, we now use the default
position embedding from the pre-trained ViT model, but it would
be interesting to integrate spatially explicit location embedding
into the proposed method [34].

In short, the proposedGWME sheds inspiring light on the general
topic of rethinking the geographical generalizability of GeoAI mod-
els, with an unsupervised self-attention model ensemble method.
To this end, this work is a step towards developing replicable and
spatially explicit models for geospatial artificial intelligence.
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