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ABSTRACT 

In this paper, we describe interesting findings and research 

results of the Airbus project MaLeTeSa (Machine Learning 

on Telecommunication Satellite). We provide a summary of 

the next-generation satellite processing hardware platform 

including benchmark results with respect to computing 

power and energy consumption based on a selected deep 

learning application. Moreover, we outline use-cases in the 

anomaly detection and telecommunications domain in an in-

orbit environment that are suitable to be tackled using 

machine learning approaches. Lastly, we summarize our 

findings and provide an outlook towards future work in the 

project. 

Conference Topics Covered 

• 5. Advances in processors/processing ➝ Next generation 

processing: new technologies, new products • 3. Data 

handling and processing for data-hungry/data-critical 

missions and applications➝ 3.1. Data management aspects 

for remote sensing missions - on-board processing, AI, ML; 

3.2. Data management for telecommunications missions - 

high performance switching, high speed AD/DA conversion, 

high data rates. 
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1. INTRODUCTION 
Artificial intelligence is very widespread today in the 

terrestrial field and offers completely new possibilities for 

solving many problems quickly and efficiently: This 

includes image recognition, speech recognition, but also 

behavioral observations and autonomous reactions. 

Recently, initial application studies and in-orbit 

demonstrations for artificial intelligence - here in particular 

machine learning - in the field of earth observation missions 

have been promoted by ESA, DLR, and others. This paper 

states the progress of an Airbus project dedicated to this 

research field with a particular focus on in-orbit edge 

processing powered by artificial intelligence. Typical 

applications here are data reduction (detection of empty 

image areas such as clouds), identification of objects (e.g., 

ships at sea), anomaly and change detection of satellite 

system or payload data, and radio frequency applications 

(e.g. dynamic spectrum utilization or signal classification) to 

name a few.  

Ultimately, the goal of this project is to perform a detailed 

analysis, optimization and characterization of a neural 

network-based implementation of telecommunications 

payload related applications, as well as the proof of function 

in the selected example applications. The findings form the 

technological basis for a future development of a 

qualification model of an artificial intelligence (AI) 

hardware and later flight hardware development for future 

telecom payloads. This pre-development is intended to 

facilitate future use of artificial intelligence in the payload of 

telecommunications satellites. The technology developed 

here is intended to find application in the next generation of 

telecom payload computers. 

The project is divided into the following four phases: 

1. Consolidation of the fields of application and 

requirements: Possible use-cases for machine 

learning in telecommunications are investigated 

whereas the focus is set on three distinct topics: 

a. "Edge computing" capabilities (i.e. for 

distributed processing of data from the 

telecommunications data stream) 

b. Anomaly detection and prediction 
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c. Telecommunications (radio frequency) 

2. AI Application development:  

a. Definition of neural network architectures 

b. Selection of datasets for training 

c. Detailed definition of the testing device 

3. Construction of a laboratory sample and test device 

4. Testing and demonstration 

As of now, phase 1 has been finished, whereas the aim of 

this paper is to summarize its main results. 

The structure of this paper is given in the following:  

Since deployment is ultimately targeted for an in-orbit 

environment, the selected FPGA hardware platform suitable 

for the space environment, i.e., the Xilinx Versal AI Core 

Series, is briefly described and benchmarked regarding 

machine learning inference performance in section 2. 

Section 3 provides a detailed description of the performed 

use-case analysis and their respective requirements 

regarding computational complexity and dataset availability 

as well as implementation challenges. Following this, two 

distinct use-cases for further implementation with respect to 

the prior mentioned topics (see Phase 1) are selected. Lastly, 

section 4 concludes this paper and provides an outlook to 

future work. 

 

2. FPGA Hardware Platform Benchmark 
The first part of this section gives a short overview of the 

hardware platform utilized in this paper. Following this, an 

initial benchmark regarding machine learning inference 

performance based on an edge-processing application in the 

telecommunications domain is summarized. 

2.1 Xilinx Versal AI Core Series 
The Versal presents a powerful hardware platform, targeting 

a range from very demanding embedded tasks up to 

networking, communications and data center applications 

[1]. Its heterogeneous architecture, which Xilinx refers to as 

an adaptive compute acceleration platform (ACAP), extends 

the combination of processing system (PS) and 

programmable logic (PL) with a third class of compute 

engines. A coarse overview of the Versal’s computing 

resources is shown in Fig. 1. These novel engines are 

particularly designed for accelerating signal processing and 

AI inference computations, and thus are known as AI 

Engines in the context of the Versal [2].  

In the following subsection we will describe the machine 

learning application used for benchmarking the Versal.  

 

 

Figure 1: Xilinx Versal computing resources. Adapted 

from [1]. 

 

2.2 Deep-Learning-based Edge-Processing 

Application 
Providing a radio terminal with more intelligence, for 

example in terms of signal analysis and spectrum awareness 

capabilities, is a key objective for space- and ground-based 

communications alike, and culminates in a concept that in 

the literature is commonly referred to as a cognitive radio 

[3]. The application selected for benchmarking performs a 

signal localization task in the wide-band domain based on a 

batch of measured I/Q samples. The problem is formulated 

as an image segmentation task which is a well-studied 

technique from the computer vision domain. A spectrogram 

is generated from input data blocks of 512x512 IQ-symbols 

and is fed into a convolutional neural network based 

machine learning model, also known as the U-NET. The U-

Net architecture used here is by default almost fully 

compatible with the hardware inference accelerators 

provided by Xilinx. The only necessary modification, 

compared to the implementation in the original paper, is the 

introduction of a zero-padding in the convolutional layers for 

avoiding the asymmetry in image resolution on both sides of 

the network. With this modification, the resulting CNN 

implementations are entirely executed on the generic 

inference accelerator, without the necessity to delegate 

incompatible processing steps from the FPGA fabric to the 

embedded CPU. 

Lastly, we want to note the necessity to perform a fixed-point 

quantization of all model parameters prior to deployment, 

since the Xilinx-based hardware accelerator is restricted to 

8-bit quantized values. This is due to much lower required 

hardware complexity as well as lower energy consumption 

for realizing fixed-point units compared to floating-point 

units. Furthermore, quantized values with a reduced bit 

width require less memory space, which is important for 

storing parameters and intermediate results directly in the 

on-chip memory in order to avoid data transfers to the 

external memory [4]. 

2.3 Benchmark Results 
We evaluated the Versal ACAP in two different 

configurations that are described in Table 1. In addition, 

various clock speeds of the programmable logic and the AI-

Engines were analyzed. The implementation of the U-Net as 

described in subsection 2.2 makes use of around 500,000 

trainable parameters. A forward pass through the quantized 



network requires more than 3 billion 8-bit Multiply-

Accumulate (MAC)-operations. 

 

Table 1. Hardware Utilization Configurations of the 

Hardware Inference Accelerator on Xilinx Versal 

Configuration C32B1 C64B1 

Flip-Flops 110k / 1.8M (6%) 132k / 1.8M (7%) 

LUTs 81k / 0.9M (9%) 92k / 0.9M (10%) 

Block RAM 0 / 32 Mb 0 / 34 Mb 

DSP Slices 139 / 1,968 (7%) 139 / 1,968 (7%) 

UltraRAM 57 / 130Mb (44%) 57 / 130Mb (44%) 

AI Engines 32 / 400 (8%) 64 / 400 (16%) 

 

The benchmark results are summarized in Tab. 2 and will be 

explained in detail in the following two subsections. 

 

Table 2. Benchmark Results for the Wideband Signal 

Localization Application 

Config 
Frequency 

[MHz] 

Latency 

[ms] 

TP 

[FPS] 

Pidle 

[W] 

Pactive 

[W] 

C32B1 333/1250 12.34 79 17.1 19.6 

C32B1 200/800 18.05 55 15.5 17.0 

C32B1 200/400 26.75 37 14.6 15.9 

C64B1 333/1250 12.10 81 19.3 22.3 

 

In the configuration with 32 AI Engines operating at the 

maximum recommended frequency of 333 MHz for the PL 

and 1250 MHz for the AIEs, the Versal DPU achieves a 

throughput of around 79 frames per second. Consequently, 

the latency for performing inference on a single data sample 

is 12.34 ms. However, as depicted in Tab. 2, the Versal 

consumes a tremendous amount of power for achieving this 

performance. In the idle state, the system already consumes 

17.1 W of power, which is increased to 19.6 W during the 

computations, a change of 2.5 W. Equipping the hardware 

accelerator with more AI Engines increases the power 

consumption even more, as might be expected. In this 

configuration the device consumes 19.3 W in the idle state, 

a plus of 2.2 W compared to the configuration with half the 

AI Engines. As indicated by the last row in Table 2, doubling 

the amount of AI Engines for this specific application results 

only in slightly increased performance, but not to an extent 

that would justify the increase in power consumption. 

 

3. Use-case analysis 
In this section we will summarize the two application 

domains analyzed during this project and show-case selected 

use-cases and their machine learning approach. 

3.1 Anomaly Detection 
The Failure Detection, Isolation and Recovery (FDIR) 

subsystem is a critical function on board all spacecraft since 

it is vital for ensuring the safety, autonomy and availability 

of the system during the mission lifetime. As spacecraft 

telemetries sent to ground increase, the monitoring burden 

on ground operations is starting to reach critical levels in 

terms of operations. Spacecraft monitoring systems require 

expert knowledge that is challenging to develop and 

maintain, meaning that algorithm assisted anomaly detection 

is more and more employed. Moreover, due to bandwidth 

limitations, only a subset of low frequency telemetries can 

be downlinked or are checked only sporadically. The inflight 

TM budget is limited by hardware and mission resources in 

terms of on-board TM packet generation rate, storage 

capacity in the satellite memory and the downlink data 

volume considering the TTC bandwidth available during the 

contact between spacecraft and ground station. As anomalies 

require potentially quick responses from operators, many 

companies are currently working on developing on-board 

anomaly detection and prediction systems. The task of 

anomaly detection is key with regards to the Failure 

Detection component of FDIR. Anomalies found in data 

usually come in three types: 

 Point anomalies – an individual data instance is 

considered as anomalous with respect to the rest of 

the data 

 Contextual anomalies – an individual data instance 

is anomalous in a specific context, but not 

otherwise anomalous if occurring at a certain time 

or certain region 

 Collective anomalies – a collection of related data 

instances is anomalous with respect to the entire 

dataset, but not individual values. They have two 

variations: 

o Events in unexpected order 

o Unexpected value combinations 

 

Figure 2 provides an exemplary visualization of those types. 

 
Figure 2: Anomaly types in telemetries. 

In the context of FDIR, it is mandatory to detect any type of 

anomaly that could potentially present a threat to a 

system/subsystem of the spacecraft or the spacecraft as a 

whole, thus the analysis of the spacecraft telemetry in the 

context of time becomes more interesting as opposed to 

detecting single isolated outliers in the data. Furthermore, 

usually the monitoring of several telemetries at a time results 



in improved accuracy in detecting anomalies due to the 

additional context information that is available from 

monitoring several variables at once.  

Multiple algorithms have been proposed to tackle this issue, 

however, in this paper, we want to restrict our focus to 

machine-learning strategies only. 

Machine learning approaches can be split into supervised 

and unsupervised approaches, based on whether labels are 

required. In order to create anomaly labels for telemetry data, 

actual anomalies need to be detected and confirmed by hand. 

As this activity is very time consuming, only a few labeled 

anomaly datasets are available for spacecraft telemetry. 

Furthermore, the amount of labels to be added is limited to 

the number of anomalies that occurred on spacecrafts. A 

better alternative is to insert simulated anomalies. Although 

this is usually accomplished by ensuring that inserted 

anomalies have the same statistical properties as actual 

anomalies, there is no guarantee that the labels are 

representative. Due to the limitation in availability of labeled 

training data, the complexity of supervised approaches as a 

whole is limited. When considering unsupervised 

approaches, available training data is not only limited to 

annotated datasets. Therefore, model complexity can 

continue to increase with training data volume, which is 

beneficial for the performance of data-driven machine 

learning approaches. Accordingly, we have identified the 

following neural network architectures to be suitable for this 

task: 

 Recurrent Neural Networks (including LSTM and 

GRU), working in the time domain. 

 Convolutional Neural Networks and Autoencoder 

approaches, that focus on feature detection. 

 Mixed topologies, like Temporal Convolutional 

Network that can store local data in an input 

memory, but are fully unrolled unlike RNN. 

 Gradient Boosting Decision Trees for predicting 

telemetry data directly 

 Attention blocks incorporated into an LSTM 

network 

 Generative Adversarial Networks for failure 

detection and isolation 

 Support Vector Machines for estimating anomaly 

scores of sparse feature vectors 

 Autoregression models predicting telemetry data 

based on previous data only 

 

3.2 Telecommunications (RF) 
In this subsection we want to describe two selected use-cases 

in the radio frequency domain that are suitable to be tackled 

using a machine-learning approach. 

3.2.1 Autoencoder-based communication 
It is possible to utilize auto-encoders to define a channel-

adaptive modulation scheme to transmit signals over a noisy 

channel. This way the modulation scheme is adapted in order 

to reduce the symbol error. A traditional autoencoder is an 

unsupervised neural network that learns how to efficiently 

compress data, which is also called encoding. The 

autoencoder also learns how to reconstruct the data from the 

compressed representation such that the difference between 

the original data and the reconstructed data is minimal. 

The auto-encoder jointly optimizes the transmitter and the 

receiver as a whole. This joint optimization has the potential 

of providing a better performance than the traditional 

systems. An architectural example is shown in Fig. 3. 

The following properties have been shown to be suitable to 

be implemented inside the auto-encoder structure: 

 MIMO functionality 

 OFDMA functionality 

 signal detection 

 channel estimation 

 equalization 

 parameter estimation, e.g., signal to noise ratio, etc. 

 transmitter and receiver synchronization 

 detecting and mitigating hardware impairments, 

e.g., phase offset, carrier frequency offset, sample 

frequency offset, etc. 

 

Figure 3: Autoencoder for Adaptive Symbol Modulation. 

[5] 

 

3.2.2 RF Fingerprinting 
Hardware imperfections in RF transmitters impart a unique 

property to the transmitted signal, similar to a fingerprint, 

which can be exploited by the communication system. A 

strategy, called RF fingerprinting, recognizes different 

transmitters using device level differences in their RF 

frontends. Hardware impairments are unavoidable due to 

several reasons: In the last decades, extensive focus has been 

set on digitizing every aspect possible of the communication 

system. This stems from the fact, that the probability of error 

in the digital domain can practically be reduced to an 

arbitrary low number with limited effort, due to various 

methods like error detection and error correction. However, 

since radio signals are electronmagnetic radiation, (digital) 

communication systems have no alternative but to emulate 

this analog quantity using some kind of electric circuit, 

terminated with an antenna. Not only does this domain 

change subjects the signal to noise, but also to non-idealities 

in the digital-to-analog hardware block, which is the key-

enabler for RF fingerprinting. 

The following gives an overview about different categories 

of hardware impairments: 



 Power amplifier imperfections: 

o Non-linearity  

o Memory effect 

 Local oscilator imperfections:  

o Carrier frequency offset 

o Sample frequency offset 

o Phase noise 

 IQ/Baseband-Path 

o Gain imbalance 

o Phase imbalance 

 Digital-to-Analog Converter: 

o Non-linearities 

o Quantization 

A major benefit can be realized in the area of information 

security as shown in [6], [7], and [8]. Also, RF fingerprinting 

was shown to perform well under different modulation 

techniques. Further benefits are a reduction in protocol 

overhead, minimization of the impact of hardware 

impairments, and the possibility of transmitter classification 

and identification. 

 

3.2.3 Modulation classification 
Lastly, we want to briefly mention the popular use case of 

modulation classification in the RF domain. In order to 

achieve high capacity on a dynamically shared channel, it is 

possible to utilize predictive and monitoring models oriented 

towards a machine-learning approach with the goal of 

identifying the current modulation scheme used by other 

channel participants [9]. By using this knowledge, the 

device’s modulation scheme can be adapted according to the 

current utilization of the channel and the impact of 

interference can be reduced. Especially in conjunction with 

the wideband spectrum utilization application introduced in 

subsection 2.2 this use-case provides a powerful tool 

towards robust communication. 

 

4. Conclusion and Outlook 
In this paper we summarized the findings of phase 1 of the 

MaLeTeSa project. In detail, we described and benchmarked 

the next-generation FPGA-based hardware platform Xilinx 

Versal. Moreover, we described relevant use-cases for 

telecommunications satellites that show promising 

performance when solved using machine learning strategies. 

Future work will be oriented towards implementing machine 

learning approaches of selected use-cases on the Versal 

hardware platform. The performance and reliability can then 

be demonstrated and proven using a test device to be 

developed. 

The hardware demonstrator (laboratory sample) is already 

being developed and set up under aerospace aspects, so that 

nothing stands in the way of later further development of the 

breadboard. This means that the use of electronic 

components, the mechanical and thermal structure, the 

analysis and production already take into account the known 

space boundary conditions. With this, the further path 

towards the qualification and then flight model is sufficiently 

prepared. 

A successful completion can demonstrate the feasibility and 

advantages to potential customers and show the feasibility 

for future products and missions - in order to enable project 

acquisition. 
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