Accelerated Deep-Learning inference on FPGAs in the Space
Domain

Invited Paper

Michael Petry*

Patrick Gest" T
michael.petry@airbus.com
patrick.gest@airbus.com
Airbus Defence and Space GmbH
Taufkirchen, Bavaria, Germany

Max Ghiglione
max.ghiglione@esa.int
European Space Agency
Noordwijk, The Netherlands

ABSTRACT

Artificial intelligence has found its way into space, and similar to
the situation on ground demands powerful hardware to unfold its
full potential. With the heterogeneous compute platform that is of-
fered by the space-grade variant of the Versal, AMD Xilinx presents
a system that is particularly targeted at accelerating Al inference in
space. This paper investigates the design flow and the achievable
performance of this novel device. We present benchmark results
in terms of concrete figures and measurements, i.e., throughput,
latency, and power consumption, achieved by a predesigned hard-
ware accelerator realized on the system, and compare them to a
previous generation platform.

CCS CONCEPTS

+ Hardware — Emerging architectures; - Computing method-
ologies — Artificial intelligence.

KEYWORDS

FPGA, hardware accelerator, neural network, machine learning,
Xilinx Versal

ACM Reference Format:

Michael Petry, Patrick Gest, Andreas Koch, Max Ghiglione, and Martin
Werner. 2023. Accelerated Deep-Learning inference on FPGAs in the Space
Domain: Invited Paper. In 20th ACM International Conference on Computing
Frontiers (CF "23), May 9-11, 2023, Bologna, Italy. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3587135.3592763

“Both authors contributed equally to this research.
T Also with Technical University of Munich.
Also with Technical University of Munich.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CF 23, May 9-11, 2023, Bologna, Italy

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0140-5/23/05.

https://doi.org/10.1145/3587135.3592763

Andreas Koch*

andreas.c.koch@airbus.com
Airbus Defence and Space GmbH
Taufkirchen, Bavaria, Germany

Martin Werner
martin.werner@tum.de
Technical University of Munich
Munich, Germany

1 INTRODUCTION

Future telecommunications satellites are envisioned to seamlessly
integrate into the mobile communication networks of the next
generation, e.g., with the raise of regenerative payloads [26]. First
signs toward the integration are already visible today with the
ongoing normative activities on non-terrestrial networks in the
current 5G New Radio standard [1]. This is a novelty for satellite
manufacturers, as it marks the first time that satellites are explicitly
included in a mobile communications standard [17]. A general goal
in these next generation communication networks is to employ
radio terminals that are more intelligent, automatically adapting
their transmission to the current state of the spectral environment,
in order to make better use of the scarce frequency resources [20].
For realizing such highly adaptive radios, research mainly focuses
on the use of algorithms in the Artificial Intelligence (AI) domain,
in particular neural networks (NNs) [14]. As a result of the success
that these methods showcase in the area of communications and
beyond, there is a major desire in the satellite industry for deploy-
ing NNs and similar algorithms directly on-board of the satellites
in space. The main challenges associated with that desire are the
limited power budget and computing resources of satellites. Fur-
thermore, due to the requirement to operate in the harsh space
environment, telecommunications satellites are typically restricted
to the use of radiation-hardened hardware, and in particular space-
grade field-programmable gate arrays (FPGAs) as the most potent
parallel compute platform for Al inference in space [19]. With the
Versal Adaptive Compute Acceleration Platform (ACAP) in the XQR
variant, AMD Xilinx (in the following referred to as Xilinx) now of-
fers a chip in a space-grade package that is particularly targeted for
machine learning applications in space, while promising more com-
pute power than traditional FPGA-based systems-on-chip (SoCs)
[7, 18]. Combining an FPGA fabric with a new class of compute
engines intended for parallel computing, including AI inference
acceleration, this device opens up new opportunities in terms of
on-board processing performance, but also comes with novel chal-
lenges in terms of system integration and application development
for satellite manufacturers. An initial evaluation of the design flow

https://orcid.org/0000-0002-8041-6246
https://orcid.org/0000-0002-3954-7324
https://orcid.org/0000-0002-1044-3142
https://orcid.org/0000-0001-6208-0745
https://orcid.org/0000-0002-6951-8022
https://doi.org/10.1145/3587135.3592763
https://doi.org/10.1145/3587135.3592763

CF 23, May 9-11, 2023, Bologna, Italy

and the capabilities of the platform is thus in the center of this
paper.

This paper is structured as follows: Section 2 starts by providing
background information on contemporary deployment techniques
of NNs on FPGAs, followed by an introduction of both considered
FPGA hardware platforms in section 3. The main contribution of
this paper is given in section 4, which describes the deployment
workflow including the utilized tool-chain in detail. Special empha-
sis is put on the steps required from transitioning a CPU/GPU-based
deep-learning model to a FPGA-executable application, especially
focusing on the quantization step and the computations involved
in quantized convolutional NNs. It concludes with a description of
the architecture of the generated Deep-Learning Processing Units
(DPU) and the development of a control application supervising the
NN inference. In Section 5, the selected deep-learning application
for the benchmark is briefly summarized, and the results of bench-
marking the generic inference accelerators, implemented on the
Xilinx Versal and Zynq UltraScale+, are presented and compared.
Lastly, a conclusion and outlook of future work is given in section
6.

2 BACKGROUND

Although the implementation of NNs on FPGA-based systems is
still an active research topic, common implementation strategies
can essentially be divided into three classes. The first and most com-
plex one is the development of a custom hardware accelerator for a
given type and architecture of a NN, either written in a hardware
description language (HDL) or given as high-level synthesis (HLS)
code [16]. Using an automatic framework like FINN [25], hls4ml
[15], or MATLAB’s HDL Coder [24] for generating a HLS/HDL
description of a custom hardware accelerator for a given NN is a
second option. Third and finally, it is possible to deploy a generic
hardware accelerator for Al inference in form of an intellectual
property (IP) core, which has the disadvantage of not being tailored
toward a specific network architecture. However, due its generic
and programmable architecture, such an IP core offers the possibil-
ity to execute a variety of NNs during operation. While the second
approach seems to be promising in terms of obtaining a custom
accelerator without the high development effort associated with the
first approach, it is currently not an option for the Versal platform.
The reason for this is that the Versal is a heterogeneous compute
platform in which the FPGA fabric is only one class of hardware
resources available for accelerating Al inference computations. At
the time of this writing, none of the aforementioned frameworks
supports a partitioning of NN computations into functional entities
that make use of all of the system’s capabilities. What is available,
however, is a generic hardware accelerator provided by the man-
ufacturer of the chip itself, which does incorporate the full set of
compute functionalities.

3 FPGA PLATFORM DESCRIPTION

The first part of this section gives a short overview of the two
hardware platforms which are evaluated in this paper. A larger
emphasis is put on the Versal ACAP and its novel compute engines,
which is in the main focus of this work. The description of the Zynq

Petry and Gest, et al.

UltraScale+ SoC is kept relatively short as it is used mostly as a
performance reference in this work.

3.1 Xilinx Versal

The Versal presents a powerful hardware platform, targeting a range
from very demanding embedded tasks up to networking, commu-
nications and data center applications [6]. Its heterogeneous archi-
tecture, which Xilinx refers to as an adaptive compute acceleration
platform (ACAP), extends the combination of processing system
(PS) and programmable logic (PL) with a third class of compute
engines. A coarse overview of the Versal’s computing resources is
shown in Fig. 1. These novel engines are particularly designed for
accelerating signal processing and Al inference computations, and
thus are known as Al Engines in the context of the Versal [28]. The
following paragraph gives a short description of their architecture.

Al Engines. In the variant that ships with the Versal AI Core Se-
ries VCK190 Evaluation Kit, the system comes with 400 AI Engines,
which are arranged in a two-dimensional grid [11]. The architecture
of one Al Engine is shown in Fig. 2. Each Al Engine is a software pro-
grammable very long instruction word (VLIW) single instruction
multiple data (SIMD) processor that excels in vector computations
[5]. Its VLIW capability allows an engine to simultaneously execute
a scalar operation, two vector move operations, two vector load
operations, one vector computation, and one vector store opera-
tion during one clock cycle [5]. The read and write operations are
executed by the two vector load units and the single vector store
unit. A program memory of 16KB with an associated instruction
fetch and decode unit completes the design [5]. One example for an
operation the SIMD vector unit is able to execute in a single clock
cycle is an element-wise multiplication of two 32-bit integer vectors
of size eight. This form of data-level parallelism alone would give
rise to a speed-up by a factor of eight compared to scalar execu-
tion. Multi-core processing, as the highest level of parallelism, is
achieved by the fact that all AI Engines can theoretically operate
in parallel. Efficient data access and intercommunication of the Al
Engines required for this high utilization gives rise to an accompa-
nied 32KB data memory each that can be grid-wise accessed from
all four sides [4].

Besides the Al engines, another architectural feature is the use
of a programmable Network-on-Chip (NoC) connecting the various
computing resources to the memory interface, I/Os, etc. as shown
in Fig. 1.

Processing Programmable
System Logic

Network-on-Chip

Memory Interface, I/O, Miscellaneous

Figure 1: Versal computing resources. Adapted from [6].

Accelerated Deep-Learning inference on FPGAs in the Space Domain

3.2 Xilinx Zynq UltraScale+

The Zynq UltraScale+ is a SoC that combines a multi-core process-
ing system with programmable logic, which is intended for use in
a broad range of embedded applications [8]. Its computing power
comes from offloading compute intensive tasks to processing blocks
on the FPGA fabric. These could be graphics and video pipelines
or, in the frame of this paper, Al inference computations. The vari-
ant of the chip used in this paper comes with a quad-core Arm
Cortex-A53 application processing unit and a dual-core CortexR5F
real-time processor forming its processing system [3]. Besides the
configurable logic blocks based on look-up tables (LUTs) and flip-
flops, the programmable logic part of the chip comprises block
RAM for data storage and digital signal processor (DSP) slices for
accelerating signal processing tasks [29]. Each DSP splice has a
27-bit x 18-bit binary multiplier with a 48-bit accumulator and a
single-instruction-multipledata (SIMD) arithmetic unit with two
48-bit inputs that can simultaneously execute two 24- or four 12-bit
additions or subtractions [29]. These DSP slices are extensively used
in Xilinx’s inference accelerator, as discussed in subsection 4.2.1.
The various components of the processing system are connected to
the programmable logic via an Arm AMBA AXI4 interconnect [29].
Note that in comparison to the Versal, the UltraScale+ only comes
in a defence-grade variant, not a space-grade one, which generally
restricts its usage on telecommunications satellites [9].
Table 1 provides a comparison of the two hardware platforms.

4 DEPLOYMENT WORKFLOW

This section provides a description of the key steps in the develop-
ment flow for deploying an Al application on a hardware accelerated
platform. First, an outline of the necessary steps in the creation of
an inference application suitable for bridging the gap between the
NN models and the hardware accelerators is given. Following that,
a detailed description of the Vitis development flow for generating
a hardware-accelerated Deep-Learning Processing Unit (DPU) is
provided. This is followed by the architectural explanation of the

AXI Interconnect
Program Instruction | |Load/Store
Memory Fetch Unit
Memory
39b Scal Fixed Point | |Float.Point Data Access
31 calar | 519 SIMD | |512b SIMD Memory o o
RISC Unit Vector Unit Vector Unit
Scalar Vector Cascade
Registers Registers

Figure 2: Versal Al Engine Architecture. Adapted from [5]

CF 23, May 9-11, 2023, Bologna, Italy

Table 1: Key Figures of the Hardware Platforms

Zynq US+ ZU9EG Versal Al Core VC1902
[29] (6]
Processors | Cortex-A53 Cortex-A72
(Quad-Core) (Dual-Core)
Cortex-R5F Cortex-R5F
(Dual-Core) (Dual-Core)
Flip-Flops 548,000 1,800,000
LUTs 274,000 900,000
Block RAM | 32 Mb 34 Mb
UltraRAM | - 130 Mb
DSP Slices 2,500 1,968
Al Engines | - 400
Interconnect | AMBA AXI4 Network-on-Chip

generated DPUs. Lastly, the development of a control application
supervising the inference application is summarized, including the
utilized benchmarking procedure.

4.1 Inference Application Development

All of the tasks related to building an Al application, which is in-
tended to be directly run on an embedded hardware platform, can
be carried out in Vitis Al Xilinx’s development environment for Al
inference [12]. The environment contains three major components
that are required for creating a NN and bringing it to a format
suitable for execution on a programmable device equipped with
an inference accelerator. These are a deep learning framework for
training and evaluating the NN, a quantizer that transforms the
floating-point operations involved in NNs to fixed-point opera-
tions, and a compiler that translates the resulting operations into
instructions understood by the generic inference accelerators from
Xilinx.

4.1.1 HW-Supported Neural Network Implementations. The infer-
ence accelerators provided by Xilinx only support a subset of the
most commonly used operations in (convolutional) NNs. Therefore,
it is strictly necessary to evaluate the compatibility of a given CNN
before starting with its implementation. If certain layers are not
supported by the accelerator, it is generally still possible to execute
the network on the hardware system. However, instead of an accel-
erated execution on the co-processor, the unsupported operations
have to be executed on the embedded CPU cores. This requires
intermediate data values to be moved back and forth between the
accelerator and the CPU, and leads to a noticeable performance
penalty due to the data transfer and the reduced processing power
of the CPU as analyzed in [13].

4.1.2 Quantization and Compilation of Neural Networks. Follow-
ing a standard training process in TensorFlow, the next step is to
quantize the network’s parameters from floating-point to fixed-
point values. For purely FPGA-based systems, a quantization is
very beneficial due to the much lower hardware complexity for
realizing fixed-point units compared to floating-point units. Using
fixed-point computations yields an implementation that consumes
less power and has lower latency [21]. Even though the Al Engines

CF 23, May 9-11, 2023, Bologna, Italy

Petry and Gest, et al.

DPU Computing Engines DPU Al Engines
Instruction Processing Processing Processing Misc. ALE Group 1 AIE Group 2 AIE Group 3
Scheduler Engine Engine Engine Engines
Instruction Global Batch Handler
Instruction a oba
. Scheduler
. Global On-Chip BRAM Buffer -Chi
Fetch Unit P On-Chip Local On-Chip Buffer Pooling
Buffer
$ ¢ AXI Interconnect $ ¢ $ Network-on-Chip
CPU Memory Controller CPU Memory Controller

Figure 3: Deep-Learning Processing Unit (DPU) for Zynq UltraScale+ (left) and Xilinx Versal (right). Adapted from [10] and

[27], respectively.

also support floating-point based vector operations, a fixed-point
implementation is still more efficient on the Versal due to the par-
ticular high integer compute performance of the AI Engines [2].
Furthermore, quantized values with a reduced bit width require
less memory space, which is important for storing parameters and
intermediate results directly in the on-chip memory in order to
avoid data transfers to the external memory [27]. Due to the lack of
floating-point operations in Xilinx’s generic inference accelerator,
an 8-bit fixed-point quantization of inputs, weights, biases, and acti-
vations is required. Besides that, the Vitis Al quantizer implements
a power-of-two quantization scheme, a special form of quantization
that is particularly well-suited for a hardware efficient realization
on a programmable FPGA [22].

4.1.3 Compilation. Having obtained a quantized NN, the final step
in the inference application development flow is to invoke the Vitis
AT Compiler, which compiles the quantized model description into
instructions for the generic accelerators [12]. The compiler outputs
a file comprising the instructions and quantized parameters, that
can be deployed on the embedded hardware platform. An embedded
program running on the CPU cores loads this file from memory
and prepares the co-processor for the inference task by transferring
weights and instructions to the accelerator.

4.2 Deep-Learning Processing Unit

The Vitis tool-flow generates a so-called Deep-Learning Process-
ing Unit, which from a high-level perspective can be described as
a microcoded co-processor with an instruction set optimized for
NN inference [10]. The set of instructions that the DPU needs in
order to perform inference for a specific NN is generated by the
Vitis AI Compiler for a given NN description, as mentioned in the
prior subsection. For the various hardware platforms that generally
provide different classes and amounts of compute resources, such
as the Zynq UltraScale+ and the Versal, Xilinx offers individually
designed accelerator architectures. Both offer a certain amount of
configurability. These configuration options determine the underly-
ing level of parallelism in the computations of the DPU, and allow

trading off more compute power with a higher usage of hardware
resources. Both architectures are briefly analyzed in the following
two subsections.

4.2.1 Zynq UltraScale+. The architecture of the generic inference
accelerator for the Zynq UltraScale+ is illustrated on the left-hand
side of Figure 3. It generally consists of an instruction fetch unit,
an instruction scheduler, an array of computing engines and an on-
chip BRAM buffer [10]. Fully implemented on the programmable
logic portion of the chip, the DPU is attached to the AXI inter-
connect for communication with the embedded CPU and external
memory. After receiving a start signal from the CPU at one of its
low-level control registers, the accelerator fetches instructions from
the off-chip memory [10]. Based on the given instructions, it loads
the NN parameters and input data into the on-chip BRAM buffer.
The instruction scheduler then delegates various compute tasks
to to the different processing engines, which operate on the data
in the buffer. As indicated by the resource usage numbers, these
processing engines heavily rely on the DSP slices and their under-
lying multipliers, adders and accumulators for their operation [10].
Intermediate feature values produced by the computing engines
are written back to the on-chip buffer. The final inference results
are transferred back to and stored in the off-chip memory, which
concludes the operation.

In this paper, only a single configuration of the DPU is consid-
ered. This configuration, which in the documentations is referred
to as the "B4096” configuration [10], tries to make as much use
of parallelism as possible and promises the highest performance,
while also consuming the most amount of resources among all
configurations. Besides the configuration options for a single DPU,
it is theoretically possible to implement multiple instances of the
DPU in parallel. This work, however, only considers the use of a
single instance of each inference accelerators.

4.2.2 Xilinx Versal. Looking at the architecture of the inference
accelerator for the Versal, which is illustrated on the right-hand side
of Figure 3, one can see that the general concept behind it is very

Accelerated Deep-Learning inference on FPGAs in the Space Domain

similar to the DPU for the Zynq UltraScale+. The main difference is
that the heavy computations involved in the convolutional layers
are delegated to the AI Engines instead of executing them in the
programmable logic [27]. Less demanding pooling layers on the
other hand are still implemented in the PL portion of the system.
A second difference is that the Versal DPU provides one global on-
chip memory buffer for shared weights and multiple local memories
integrated into batch handlers, that can operate on different data
samples in parallel [27]. To achieve this parallelism, each batch
handler has a private group of Al Engines [27]. The operation
of the Versal DPU is otherwise similar to the UltraScale+ DPU.
Instructions, parameters and inputs are loaded into the respective
on-chip memory portions of the accelerator, the scheduler initiates
a data transfer to the AI Engines for processing, and processed
inputs are sent back to the memory. This work considers multiple
configurations of the Versal DPU, but only ones that rely on a
single batch handler. This is due to unresolved problems when
using multiple batch handlers, which is potentially due to an error
in the own implementation. The main parameter that is varied in
the configurations that are considered in this work, is the number of
Al Engines used for processing the data. Valid values include either
32 or 64 Al Engines, which correspond to the two configurations
that in the documentation are referred to as ?C32B1” and "C64B1”,
and represent a DPU with one batch handler and 32 or 64 AlEs,
respectively [27].

4.3 Development of Control Applications

After having obtained a running version of the generic inference
accelerator, control programs running on top of the embedded
Linux system for the communication with the accelerator have to
be written. A majority of the complexity associated with this task
is abstracted away by the availability of a high-level application
programming interface (API) for C++ and Python [12]. In this work,
the Python interface was used, yielding a fairly compact script that
roughly consists of the following elements:

o Instantiate a so-called runner that encapsulates the generic
inference accelerator.

e Feed the runner with the resulting instructions for the accel-
erator from the compiled neural network.

e Allocate an input and output buffer in main memory for the
data samples.

o Fill the input buffer with data.

o Give the accelerator a start signal to begin execution.

o Wait for the accelerator to finish execution.

Frequency Scaling. Lastly, the issue of power consumption in the
context of satellite systems is to be targeted. As the Versal is known
to be more power hungry than its predecessors, an important task
of this work was to get quantitative measurements of power values
and investigate whether these could be reduced without sacrificing
too much performance. One possible approach that is considered
in this paper, is the reduction of the operating frequencies of the
chip. In case of the Versal, there are two critical frequency domains:
The frequency with which the programmable logic is driven, and
the operating frequency of the Al Engines. By default, the generic
inference accelerator runs at the maximum recommended frequen-
cies, which are 333 MHz for the PL and 1.25 GHz for the AlEs [27].

CF 23, May 9-11, 2023, Bologna, Italy

Through a simple change in the configuration of the accelerator,
these frequencies can theoretically be arbitrarily lowered. Follow-
ing a recommendation about using a multiple between two and
four for the ratio between the two frequencies in order to achieve
good performance, two further frequency combinations were tried
out in this work, that are depicted in the first column of Tab. 2.

5 BENCHMARKING RESULTS

In this section, the benchmarking results of the generic inference
accelerators are presented. First, the selected deep-learning appli-
cation is briefly summarized. Afterwards, various hardware config-
urations of the accelerators implemented on the Versal and Zynq
UltraScale+ are presented. Finally, benchmark performance of the
application is evaluated.

5.1 Deep-Learning Application

The application considered solves an important task from the signal
analysis and spectrum awareness domain by determining which
frequency bands are currently occupied and which are not, based
on an input stream of sampled I/Q data. With the means of convo-
lutional neural networks (CNNs), precomputed spectrogram input
images are fed into the neural network and transformed to a binary
2D image in the same dimensions that denotes presence or absense
of a signal for each frequency-time combination along both axis.
The architecture utilized is the [23].

5.2 Hardware utilization

For benchmarking both hardware platforms, one hardware acceler-
ator configuration for the Zynq UltraScale+ and two for the Xilinx
Versal were selected, as presented in table 2. In addition, various
clock speeds of the programmable logic and, in case of the Versal,
AlI-Engines were analyzed.

The implementation U-Net makes use of around 500,000 train-
able parameters. A forward pass through the quantized network
requires more than 3 billion 8-bit Multiply-Accumulate (MAC)-
operations. With 512 by 512 wide input images, we believe that
even though this model might not seem that large compared to typ-
ical CNNs in computer vision applications, however, in the signal
processing domain such modest sized input data is typical, and thus
the benchmark results are nonetheless interesting. The benchmark
results are summarized in Tab. 3 and will be explained in detail in
the following two subsections.

5.3 Zyngq UltraScale+

As shown in the first row of Table 3, the Zynq UltraScale+ DPU in
its B4096 configuration operating at a PL frequency of 325 MHz
achieves a throughput of 50 frames per second. In terms of latency,
19.38 ms was measured. In the idle state, the device consumes
around 3.9 W of power. Once the inference computation starts and
the DPU is active, the power consumption jumps to a value of 6.1
W. This marks a change of 2.2 W compared to the idle state.

5.4 Xilinx Versal

In the configuration with 32 Al Engines operating at the maximum
recommended frequency of 333 MHz for the PL and 1250 MHz
for the AIEs, the Versal DPU achieves a throughput of around

CF 23, May 9-11, 2023, Bologna, Italy

Petry and Gest, et al.

Table 2: Hardware Utilization Configurations of the Generic Inference Accelerator on Zynq UltraScale+ and Versal

Zynq UltraScale+ Xilinx Versal
Configuration B4096 C32B1 C64B1
Flip-Flops 98,000 / 548,000 (18%) | 110,000/ 1.8M (6%) 132,000 / 1.8M (7%)
LUTs 52,000 / 274,000 (19%) | 81,000 / 900,000 (9%) 92,000 / 900,000 (10%)
Block RAM 9 Mb / 32 Mb (28%) 0 Mb / 32 Mb (0%) 0 Mb / 34 Mb (0%)
DSP Slices 710 / 2,520 (28%) 139 /1,968 (7%) 139 /1,968 (7%)
UltraRAM - 57 Mb / 130 Mb (44%) 57 Mb / 130 Mb (44%)
Al Engines - 32 / 400 (8%) 64 / 400 (16%)

79 frames per second, which roughly corresponds to a factor of
1.5 compared to the UltraScale+. Consequently, the latency for
performing inference on a single data sample is reduced to 12.34 ms.
However, as depicted in Tab. 3, the Versal consumes a tremendous
amount of power for achieving this performance gain. In the idle
state, the system already consumes 17.1 W of power, which is
increased to 19.6 W during the computations, a change of 2.5 W.
Comparing idle states, the Versal thus consumes more than 4 times
the power of the UltraScale+. Equipping the DPU with more Al
Engines increases the power consumption even more, as might be
expected. In this configuration the device consumes 19.3 W in the
idle state, a plus of 2.2 W compared to the configuration with half
the AI Engines. As indicated by the last row in Table 3, doubling
the amount of Al Engines for this specific application results only
in slightly increased performance, but not to an extent that would
justify the increase in power consumption. This might potentially
be a consequence of the higher complexity of the resulting DPU
implementation for handling more AI-Engines.

Due to this high power consumption, it is particularly interesting
to investigate how a change in the operation frequencies affects
the system. As shown in the third row of Table 3, a reduction of the
operating frequencies from 333 and 1250 MHz to 200 and 800 MHz
for the PL and AIE reduces the throughput from 79 to 55 frames per
second. The gain is a decrease in the power consumption during
the computation time from 19.6 W to 17 W, a notable change of 2.6
W. Further decreasing the AIE frequency to 400 MHz goes along
with a reduction of the power consumption in the active state
to 15.9 W. Operating at these frequencies, the Versal produces a
similar throughput as the Zynq UltraScale+ operating at the highest
frequency, but still consumes more than 2.5 times the power.

In the case of dynamic power consumption, the perspective
changes. Considering only the change of power from idle to active
state vs. the throughput, the Versal does show significant gains
compared to the UltraScale+, as depicted in Fig. 4. Using the metric
of required watts per frame per second, the Versal interestingly
shows its most efficient configuration in the mid-frequency range,
with 27.3 mW/fps dynamic power. Contrary to that, the UltraScale+
requires a dynamic power of 44 mW/fps. Moreover, considering
this metric, the Versal performs better in all its configurations than
the UltraScale+.

Lastly, we want to note that for all hardware configurations
throughput and latency are reciprocal. This is due to utilizing only
a since batch handler. Contrary to the US+, the Versal does support

Table 3: Benchmark Results for the Wideband Signal Local-
ization Application

Config. Frequency | TP Latency Pigle Pactive PA

[MHz] [FPS] [ms] [W] [W] [W]
B4096 325 50 19.38 3.9 6.1 2.2
C32B1 333/1250 79 12.34 17.1 19.6 2.5
C32B1 200/800 55 18.05 15.5 17.0 1.5
C32B1 200/400 37 26.75 14.6 15.9 1.3
C64B1 333/1250 81 12.10 19.3 22.3 3.0

C32B1 @ 333 / 1250 MHz 316
C32B1 @ 200 / 800 MHz 273
C32B1 @ 200 / 400 MHz |35.1
C64B1 @ 333 / 1250 MHz 37.0
0 10 20 30 40 50

Pa / Throughput [mW / fps]

Figure 4: Efficiency comparison of dynamic power vs.
throughput.

multiple batch handlers, which can be imagined as an inherent par-
allelized processing of the input by realizing multiple copies of the
inference network [27]. Using this technique, the throughput can be
m-fold multiplied by utilizing m batch handlers (neglecting perfor-
mance degradation), while the same latency would be maintained.
Impact to the power consumption in terms of total throughput per
total power consumption is subject of further investigation.

Summarizing, the Versal offers a decent increase in performance
over the UltraScale+ for the wideband signal localization appli-
cation. Nevertheless, it requires substantially more power. How-
ever, when considering the idle power consumption as inherent
and only consider the change in power when active, the metric
Pp/Throughput, which denotes the Watts per FPS needed, shows,
that the Versal is slightly ahead of the Zynq UltraScale+ in terms
of dynamic power.

Accelerated Deep-Learning inference on FPGAs in the Space Domain

6 CONCLUSION AND OUTLOOK

This paper covered the workflow of accelerating Al inference ap-
plications on the new Versal ACAP. The Versal is a particularly
interesting hardware platform in the context of telecommunications
satellites, as it is currently one of the most powerful commercial
off-the-shelf devices that comes in a space-grade variant. With the
Al Engines as a novel class of compute engines, the chip promises
to provide the compute performance that is required for the next-
generation telecommunications infrastructure that increasingly re-
lies on artificial intelligence. In a deep learning application selected
from the radio frequency domain, the Versal outperformed the Ul-
traScale+ performance-wise by 50%. However, this performance
gain comes at the cost of a drastically increased power consumption.
This work considered the generic implementation approach that is
currently available for the acceleration of inference applications on
the Versal.

This paper opens further research questions in two separate di-
rections. The primary objective is to complete the implementation
of the custom inference accelerator and evaluate potential perfor-
mance gains compared to the generic accelerators. Within this, the
design space in terms of mapping and implementing different com-
pute functions on the different classes of hardware resources on the
Versal could be further explored. Second, a further investigation
is to explore potential ways to gain a reduction in the power con-
sumption of the chip. In a space-related environment, this is a key
factor not only for power consumption but also thermal dissipation.
As the power demand of the Versal is factors above the UltraScale+
and the available power budget of telecommunications satellites is
limited, this could otherwise be a real restriction for the use of the
Versal on such systems.

REFERENCES

[1] 3d Generation Partnership Project. 2023. Release 17. https://www.3gpp.org/
specifications-technologies/releases/release-17. [Online; accessed 22-January-
2023].

[2] A. Gupta. 2020. Architecture apocalypse dream architecture for deep learning
inference and compute - versal ai core. https://www.xilinx.com/content/dam/
xilinx/support/documents/white_papers/EW2020-Deep-Learning-Inference-
AlCore.pdf. [Online; accessed 28-January-2023].

[3] Advanced Micro Devices, Inc. 2019. ZCU102 Evaluation Board User Guide.
https://docs.xilinx.com/v/u/en-US/ug1182-zcul02-eval-bd. [Online; accessed
25-January-2023].

[4] Advanced Micro Devices, Inc. 2022. Al Engine Kernel and Graph Program-
ming Guide. https://www.xilinx.com/content/dam/xilinx/support/documents/
sw_manuals/xilinx2022_2/ug1079-ai-engine-kernel-coding.pdf. [Online; ac-
cessed 25-January-2023].

[5] Advanced Micro Devices, Inc. 2022. Al Engines and Their Applications. https:
//docs.xilinx.com/v/u/en-US/wp506-ai-engine. [Online; accessed 25-January-
2023).

[6] Advanced Micro Devices, Inc. 2022. Versal Architecture and Product Data Sheet:
Overview. https://docs.xilinx.com/v/u/en-US/ds950-versal-overview. [Online;
accessed 25-January-2023].

[7] Advanced Micro Devices, Inc. 2022. XQR Versal for Space 2.0 Applica-

tions. https://www.xilinx.com/content/dam/xilinx/publications/product-briefs/

xilinx-xqr-versal-product-brief.pdf. [Online; accessed 22-January-2023].

Advanced Micro Devices, Inc. 2022. Zynq UltraScale+ MPSoC Product

Brief. https://www.xilinx.com/content/dam/xilinx/support/documents/product-

briefs/zynq-ultrascale-plus-product-brief.pdf. [Online; accessed 25-January-

2023].

Advanced Micro Devices, Inc. 2023. Defense-Grade Zynq UltraScale+ MP-

SoCs. https://www.xilinx.com/products/silicon-devices/soc/xq-zyng-ultrascale-

mpsoc.html. [Online; accessed 25-January-2023].

Advanced Micro Devices, Inc. 2023. Dpuczdx8g for zynq ultrascale+ mpsocs.

https://docs.xilinx.com/r/en-US/pg338-dpu. [Online; accessed 29-January-2023].

[11] Advanced Micro Devices, Inc. 2023. Versal Al Core Series VCK190 Evaluation

8

=

[9

=

[10

[12

(13

(14

[16

(17

[18

[19

[20]

[21

[22]

~
&

[24

[25]

[26

[27

[28

[29

CF 23, May 9-11, 2023, Bologna, Italy

Kit. https://www.xilinx.com/products/boards-and-kits/vck190.html. [Online;
accessed 25-January-2023].

Advanced Micro Devices, Inc. 2023. Vitis ai user guide. https://docs.xilinx.com/r/
en-US/ugl1414-vitis-ai. [Online; accessed 29-January-2023].

Ahmad Al-Zoubi, Gianluca Martino, Fin H. Bahnsen, Jun Zhu, Holger Schlarb, and
Goerschwin Fey. 2022. CNN Implementation and Analysis on Xilinx Versal ACAP
at European XFEL. In 2022 IEEE 35th International System-on-Chip Conference
(SOCC). 1-6. https://doi.org/10.1109/SOCC56010.2022.9908101

Daniel Chew and A. Brinton Cooper. 2020. Spectrum Sensing in Interference and
Noise Using Deep Learning. In 2020 54th Annual Conference on Information Sci-
ences and Systems (CISS). 1-6. https://doi.org/10.1109/CISS48834.2020.1570617443
J. Duarte, S. Han, P. Harris, S. Jindariani, E. Kreinar, B. Kreis, J. Ngadiuba, M.
Pierini, R. Rivera, N. Tran, and Z. Wu. 2018. Fast inference of deep neural
networks in FPGAs for particle physics. Journal of Instrumentation 13, 07 (Jul
2018), P07027-P07027. https://doi.org/10.1088/1748-0221/13/07/p07027
Clément Farabet, Berin Martini, Polina Akselrod, Selguk Talay, Yann LeCun, and
Eugenio Culurciello. 2010. Hardware accelerated convolutional neural networks
for synthetic vision systems. In Proceedings of 2010 IEEE International Symposium
on Circuits and Systems. 257-260. https://doi.org/10.1109/ISCAS.2010.5537908
Fraunhofer Institute for Integrated Circuits IIS. 2023. 5G Satellite Integration.
https://www.iis.fraunhofer.de/en/ff/kom/satkom/sat-5g.html. [Online; accessed
22-January-2023].

Brian Gaide, Dinesh Gaitonde, Chirag Ravishankar, and Trevor Bauer. 2019. Xilinx
Adaptive Compute Acceleration Platform: VersalTM Architecture. In Proceedings
of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (Seaside, CA, USA) (FPGA ’19). Association for Computing Machinery,
New York, NY, USA, 84-93. https://doi.org/10.1145/3289602.3293906

Max Ghiglione and Vittorio Serra. 2022. Opportunities and Challenges of Al on
Satellite Processing Units. In Proceedings of the 19th ACM International Conference
on Computing Frontiers (Turin, Italy) (CF "22). Association for Computing Ma-
chinery, New York, NY, USA, 221-224. https://doi.org/10.1145/3528416.3530985
S. Haykin. 2005. Cognitive radio: brain-empowered wireless communications.
IEEE Journal on Selected Areas in Communications 23, 2 (2005), 201-220. https:
//doi.org/10.1109/JSAC.2004.839380

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart
van Baalen, and Tijmen Blankevoort. 2021. A White Paper on Neural Network
Quantization. arXiv:arXiv:2106.08295

Dominika Przewlocka-Rus, Syed Shakib Sarwar, H. Ekin Sumbul, Yuecheng Li,
and Barbara De Salvo. 2022. Power-of-Two Quantization for Low Bitwidth and
Hardware Compliant Neural Networks. arXiv:arXiv:2203.05025

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional
Networks for Biomedical Image Segmentation. https://doi.org/10.48550/ARXIV.
1505.04597

The MathWorks, Inc. 2022. Custom IP Core Generation. https://www.mathworks.
com/help/hdlcoder/ug/custom-ip-core-generation.html. [Online; accessed 22-
January-2023].

Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott, Philip
Leong, Magnus Jahre, and Kees Vissers. 2017. FINN: A Framework for Fast, Scal-
able Binarized Neural Network Inference. In Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (Monterey, Cali-
fornia, USA) (FPGA °17). Association for Computing Machinery, New York, NY,
USA, 65-74. https://doi.org/10.1145/3020078.3021744

Woodrow Wilson International Center for Scholars. 2021. Seizing Opportunities:
Four National Security Questions to Ask About the Use of Satellites in 5G Net-
works. https://5g.wilsoncenter.org/sites/default/files/media/uploads/documents/
STIP-SeizingOpportunities.pdf. [Online; accessed 22-January-2023].

Xilinx Inc. 2022. DPUCVDXS8G for Versal ACAPs. https://www.xilinx.com/
content/dam/xilinx/support/documents/ip_documentation/dpucvdx8g/v1_1/
pg389-dpucvdx8g.pdf. [Online; accessed 24-January-2023].

Xilinx Inc. 2022. System-Level Benefits of the Versal Platform.
https://www.xilinx.com/content/dam/xilinx/support/documents/white_papers/
wp539-versal-system-level-benefits.pdf. [Online; accessed 25-January-2023].
Xilinx Inc. 2022. UltraScale Architecture and Product Data Sheet:
Overview. https://www.xilinx.com/content/dam/xilinx/support/documents/
data_sheets/ds890-ultrascale-overview.pdf. [Online; accessed 25-January-2023].

https://www.3gpp.org/specifications-technologies/releases/release-17
https://www.3gpp.org/specifications-technologies/releases/release-17
https://www.xilinx.com/content/dam/xilinx/support/documents/white_papers/EW2020-Deep-Learning-Inference-AICore.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/white_papers/EW2020-Deep-Learning-Inference-AICore.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/white_papers/EW2020-Deep-Learning-Inference-AICore.pdf
https://docs.xilinx.com/v/u/en-US/ug1182-zcu102-eval-bd
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2022_2/ug1079-ai-engine-kernel-coding.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/sw_manuals/xilinx2022_2/ug1079-ai-engine-kernel-coding.pdf
https://docs.xilinx.com/v/u/en-US/wp506-ai-engine
https://docs.xilinx.com/v/u/en-US/wp506-ai-engine
https://docs.xilinx.com/v/u/en-US/ds950-versal-overview
https://www.xilinx.com/content/dam/xilinx/publications/product-briefs/xilinx-xqr-versal-product-brief.pdf
https://www.xilinx.com/content/dam/xilinx/publications/product-briefs/xilinx-xqr-versal-product-brief.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/product-briefs/zynq-ultrascale-plus-product-brief.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/product-briefs/zynq-ultrascale-plus-product-brief.pdf
https://www.xilinx.com/products/silicon-devices/soc/xq-zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/xq-zynq-ultrascale-mpsoc.html
https://docs.xilinx.com/r/en-US/pg338-dpu
https://www.xilinx.com/products/boards-and-kits/vck190.html
https://docs.xilinx.com/r/en-US/ug1414-vitis-ai
https://docs.xilinx.com/r/en-US/ug1414-vitis-ai
https://doi.org/10.1109/SOCC56010.2022.9908101
https://doi.org/10.1109/CISS48834.2020.1570617443
https://doi.org/10.1088/1748-0221/13/07/p07027
https://doi.org/10.1109/ISCAS.2010.5537908
https://www.iis.fraunhofer.de/en/ff/kom/satkom/sat-5g.html
https://doi.org/10.1145/3289602.3293906
https://doi.org/10.1145/3528416.3530985
https://doi.org/10.1109/JSAC.2004.839380
https://doi.org/10.1109/JSAC.2004.839380
https://arxiv.org/abs/arXiv:2106.08295
https://arxiv.org/abs/arXiv:2203.05025
https://doi.org/10.48550/ARXIV.1505.04597
https://doi.org/10.48550/ARXIV.1505.04597
https://www.mathworks.com/help/hdlcoder/ug/custom-ip-core-generation.html
https://www.mathworks.com/help/hdlcoder/ug/custom-ip-core-generation.html
https://doi.org/10.1145/3020078.3021744
https://5g.wilsoncenter.org/sites/default/files/media/uploads/documents/STIP-Seizing Opportunities.pdf
https://5g.wilsoncenter.org/sites/default/files/media/uploads/documents/STIP-Seizing Opportunities.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/ip_documentation/dpucvdx8g/v1_1/pg389-dpucvdx8g.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/ip_documentation/dpucvdx8g/v1_1/pg389-dpucvdx8g.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/ip_documentation/dpucvdx8g/v1_1/pg389-dpucvdx8g.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/white_papers/wp539-versal-system-level-benefits.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/white_papers/wp539-versal-system-level-benefits.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds890-ultrascale-overview.pdf

	Abstract
	1 Introduction
	2 Background
	3 FPGA Platform Description
	3.1 Xilinx Versal
	3.2 Xilinx Zynq UltraScale+

	4 Deployment workflow
	4.1 Inference Application Development
	4.2 Deep-Learning Processing Unit
	4.3 Development of Control Applications

	5 Benchmarking Results
	5.1 Deep-Learning Application
	5.2 Hardware utilization
	5.3 Zynq UltraScale+
	5.4 Xilinx Versal

	6 Conclusion and Outlook
	References

