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ABSTRACT
Hybrid classic-quantum systems utilized existing quantum hard-
ware formachine learning (ML) by running pre- and post-processing
on classic hardware to overcome the limitations of today’s quantum
computers. In this work, hybrid systemswith several pre-processing
techniques and two circuit architectures are evaluated by classify-
ing remote sensing (RS) imagery. The potential of quantummachine
learning (QML) for RS is investigated and particularly autoencoder
methods are found to be suitable for pre-processing. The code is
published in an open repository: https://github.com/tumbgd/qc4rs.
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1 INTRODUCTION
Quantum supremacy, which is the ability to solve computational
problems in a reasonable time that is out of reach for classic su-
percomputers, has been theoretically demonstrated for a highly
abstract task [1]. Quantum computers exploit the superposition and
entanglement of a qubit, which allows it to follow different paths
of computation at the same time [9]. Additional, recent advantages
in the development of prototypes for quantum computers have fur-
ther driven the research in the rising field of quantum computing.
Parameterized quantum circuits (PQCs) are a way to implement
algorithms on quantum hardware and have been successfully used
as ML models for the classification of classic data within hybrid
systems [2]. Generally, a quantum circuit consists of unitary trans-
formations Ui , which are also called quantum gates and act on the
quantum state |ψ ⟩. A circuit Ûθ can be built from a set {Ui (θi )} of
such parameterized unitary operators. Then, a PQC Ûx,θ = Ûθ Ûx
consists of an encoder circuit Ûx and a variational circuit Ûθ . The
encoder circuit is parameterized by the input data x and encodes
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it into quantum state. The variational circuit is parameterized by
a set of parameters θ , which can be optimized by minimizing a
loss function and acts on the quantum state |ψ ⟩. In this work, the
optimizer of choice is Adaptive Moment Estimation. Now, a PQC
as ML model is defined by:

fθ (x) = ⟨ψ |Û †

x,θMÛx,θ |ψ ⟩ = ⟨M⟩x,θ (1)

whereM is a Hermitian operator, which is one of the Pauli matrices
representing an observable, and ⟨M⟩x,θ is the measured expecta-
tion value, which is the output of the model and mapped to the
prediction ŷ for the label y of the input data x . However, large-scale
fault-tolerant quantum computers are still out of reach, and due
to noise in quantum hardware, only short sequences of operations
and a limited amount of qubits can be realized. A workaround is hy-
brid classic-quantum systems (Fig.: 1). The pre-processing, which
is the feature extraction and dimensionality reduction, and the
post-processing, which is the parameter updating, are done classic
to reduce the requirements of quantum hardware. Already today,
hybrid systems successfully use existing quantum hardware for
scaled-down ML problems, and several successful attempts at the
classification of computer vision datasets, like handwritten digits,
were presented in the literature [2]. Particularly the pre-processing
is important for the application of QML in RS since the images do
not fit into the limited input domain of the PQCs. Even if more
realizable qubits become available the input domain should be as
small as possible, while obtaining a meaningful representation of
the data, to counter noise in quantum hardware. Furthermore, data
reduction is important to create meaningful features to support
classification, reduce the computational effort and avoid problems
like the curse of dimensionality and overfitting on the training
data. Several classic pre-processing methods are thus implemented
inside hybrid systems with two PQCs for classification in different
configurations and two RS image datasets are used for evaluation.

2 METHODOLOGY
Nine preprocessing techniques, which generally reduce the input
image to K = 16 elements, were evaluated within hybrid systems.
Besides downscaling and the linear dimensionality reduction meth-
ods principal component analysis and factor analysis, several au-
toencoder models are implemented. Single- and multi-layer autoen-
coder, convolutional autoencoder, and autoencoder created from
pretrained restricted Boltzmannmachines are tested. Additionally, a
very deep convolutional network with 16 layers (VGG16) [8] is used
without the fully connected top layers to extract features before
the dimensionality reduction techniques in an attempt to increase
the classification accuracy of the PQCs. For the embedding of the
reduced classic data into quantum state, basis and angle encoding
was considered. The quantum systems are simulated on classic
hardware and the circuit architectures were previously presented
in the literature. The FPQC, which is based on [4], already gave
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Figure 1: General scheme of the hybrid systems.

promising results for the classification of earth observation imagery
[7]. Furthermore, the GPQC based on [5] was successfully used for
the classification of handwritten digits [5]. Both architectures are
used with an input space of K = 16 data qubits qk while the FPQC
has one additional readout qubit qr .A single qubit is measured to
obtain an expectation value for the label of input data (Eqn.: 1).
Furthermore, the three Pauli observables and three loss functions,
which are hinge loss, square hinge loss, and binary cross-entropy
loss, were considered. Classification was also attempted classic with
two dense layers instead of a PQC. Since the FPQC has 32 and the
GPQC 31 trainable parameters, a classic approach with 37 train-
able parameters presents a fair comparison. All experiments were
carried out with two datasets: EuroSAT [6] and RESISC45 [3].

3 EXPERIMENTS AND RESULTS
Grid searches for both circuit architectures were conducted to find
the most promising configuration of encoding method, observable,
and loss function. While the impact of the chosen loss function was
low, the choice of encoding method and quantum observable should
be taken with care. Based on grid searches, two suitable configu-
rations for each circuit were chosen for further experiments. Two
binary classification tasks from both datasets were used to evaluate
hybrid systems with the PQCs and nine pre-processing techniques
each. The hybrid systems achieved high accuracies, especially the
FPQC, which achieved > 95% in some instances for both datasets
with autoencoder models for pre-processing. Overall, autoencoder
models outperformed other reduction techniques. For both circuits,
hybrid systems with prior feature extraction by a VGG16 in combi-
nation with a deep autoencoder resulted in the highest accuracy
scores with the EuroSAT data, while hybrid systems with the con-
volutional autoencoder performed best with RESISC45. The classic
dense layer approach achieved results similar to a PQC and was
even outperformed by the FPQC in some instances. In a one-versus-
rest (OvR) attempt on multiclass classification, it was found that the
outputs of the individual OvR classifiers did not lead to meaningful
comparable magnitudes. Nevertheless, a hybrid system containing
the VGG16, a deep autoencoder, and the FPQC resulted in a mean
accuracy of 57.11% over five runs and the best run in 59.50% for
classification of the EuroSAT dataset. The individual OvR classifiers
resulted in accuracies of about 90%, similar to the classic approach.
However, the classic approach outperformed the hybrid systems
with a mean overall accuracy of 69.61%, and the hybrid systems
which contained the GPQC did, in general, not lead to meaningful

results for multiclass classification. No sufficient results could be
obtained for multiclass classification of the RESISC45 dataset with
any of the hybrid systems.

4 CONCLUSION
Deep autoencoder and convolutional autoencoder were shown to
be best suited for the pre-processing and resulted in meaningful
small-scale representations for the RS imagery. Furthermore, the
FPQCwas found to achieve higher accuracy and loss scores than the
GPQC for every classification task. However, this may change with
quantum noise due to the lower circuit depth of the GPQC with
≥ 9 consecutive gates compared to the FPQC with a depth of ≥ 35.
Overall, the hybrid systems achieved similar accuracies compared
to the simple classic approach. It is worth noting, that the learning
curves of the OvR quantum classifiers showed that training over
three epochs is enough for both circuits since loss and accuracy
did not significantly change after. Since the magnitudes of the OvR
classifier outputs are not reasonably comparable, future work is
to test probability calibration for the OvR classifiers. The findings
imply that small-scale quantum systems have potential for RS and
if large-scale and error-corrected hardware becomes available, and
a computational speed-up compared to classic approaches can be
realized, QML may become a new way to process RS imagery.
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