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ABSTRACT

Processing of huge data volumes from remote sensing
and Earth Observation (EO) missions requires the
development of new generations of space applications
and data systems based on Machine Learning (ML).
Specifically, the breakthroughs in ML based on Neural
Networks (NNs) in the last decade, promise innovative
solutions to drive forward and expand the on-board
data processing and data systems in the space segment.
Therefore, despite their high computational costs, there is
an increasing demand for deploying solutions and space
services based on NNs. Hence, due to the computational
constraints on space missions, efficient hardware solu-
tions for deploying NNs via Field Programmable Gate
Array (FPGA)-enabled System on [a] Chip (SoC), in
particular Commercial Off-The-Shelf (COTS) solutions,
are gaining significant interest.

To investigate this approach, Airbus Defence and Space
GmbH is currently leading a research project, Machine
Learning Application Benchmark (MLAB), funded by
European Space Agency (ESA) General Support Tech-
nology Programme. This project aims at developing a
ML application benchmark targeting space data systems
with a special focus on the deployment of NNs on COTS
processing devices.

In this paper, we review frameworks and workflows used
for the development of NNs that exhibit a high adher-
ence to the project framework and goals. Specifically,
we provide a brief survey of the state-of-the-art tools and
frameworks used for the development and deployment of
NN models on FPGA-enabled SoCs. Based on the state-
of-the-art taxonomy [1] of automated FPGA compilation
and design workflows for NN deployment, we classify
the deployment frameworks, into Overlay and Dedicated
approaches. We further elaborate on these two classes
of approaches, compare their characteristics, and discuss
implications in exploiting each class in development of
space solutions, services, and data systems.
Next, we discuss the deployment tools based on their
tradeoffs in various aspects, as well as their ease of pro-
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gramming and openness. Our analyses, discussions, and
primary prototypes show that these deployment frame-
works provide a wide range of possibilities for deploying
NNs to space applications while satisfying the computa-
tional restrictions.

1. INTRODUCTION

During the last two decades, NNs, have gradually gained
more popularity in the field of ML due to their gener-
alization capabilities and their possibility to be adapted
to various use cases and to be applied to many dis-
parate domains. In particular, Deep Neural Networks
(DNNs) experienced significant breakthroughs in the last
decade, due to the growing abundance of computational
resources, that enabled training and running these mod-
els in feasible time frames. Especially, technological ad-
vances in High Performance Computing and Cloud ser-
vices, enabled researchers to develop and train more com-
plex and deeper, hence more accurate NNs on increas-
ingly larger and more sophisticated datasets.

Embedded devices, such as SoCs, are gradually gaining
more importance for NN inference, as they enable a mix
of data privacy, low latency bounds, and power efficiency
and allow for satisfying application-specific constrains.
The constrains expressed above are not uniquely limited
to earth-bound applications and appear in space-bound
applications, as well. In fact, inference in space is only
possible on special on-board embedded devices that can
deal with challenges almost solely present for space ap-
plications, including strict energy budgets, limited com-
pute resources, and severe operating conditions such as
exposure to harsh cosmic radiations. In addition, space
services and data systems can only rely on on-board pro-
cessing on such embedded devices for employing infer-
ence for modern DNNs in real time because the latency
imposed by the roundtrip delay to Earth is a limiting fac-
tor. For instance, latency-sensitive tasks such as reli-
able optical guidance, navigation, and control (GN&C)
require on-board inference. Equally importantly, down-
link bandwidth limitations do not allow for Cloud-based
solutions typically used in other applications, like mobile
phones. As an example, bandwidth-heavy EO services
can only be efficiently realized by reducing bandwidth
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through on-board processing (e.g., inference) on embed-
ded SoCs.

However, these modern DNNs exhibit high computa-
tional costs, corresponding to their size and complex-
ity, which render them ill-suited in nature for deploy-
ment on on-board embedded devices with limited com-
putational power. Consequently, finding approaches that
enable simple, automated, and efficient preparation, and
deployment of DNN inference on such devices is a key
priority.

On the other hand, with the increased use of NNs, the
deployment of machine learning on embedded devices
has shifted from a Central Processing Unit (CPU)-based
approach towards a NNs accelerator-based one. Com-
mercially used boards based on Graphics Processing
Units (GPU) or Tensor Processing Units (TPUs) are still
adopted in spacecraft only for very short missions in
low earth orbit due to their limited reliability and power
efficiency. Spacecraft typically employ CPUs for pro-
cessing applications, which are available as very reliable
ASICs, but are highly inefficient for demanding compu-
tations operations like NNs inference. Especially, Convo-
lutional Neural Networks (CNNs) are facing serious bot-
tlenecks in terms of processing parallelism and memory
bandwidth on classical microcontroller-based processors.
For this reason, for high parallelism applications, like
beamforming or compression, spacecraft employ dedi-
cated ASICs or, more recently, SRAM or Flash based FP-
GAs. FPGA manufacturers have in recent years started
to offer tools to deploy machine learning algorithms with
more ease, as we will describe in this paper. FPGAs are
well suited to be employed as a class of devices on which
to deploy NNs accelerators, as they allow for Software-
Hardware Co-Design and exploit use of suitable Intellec-
tual Property (IP) blocks specifically designed for partic-
ular applications or use cases. Additionally, FPGA-based
SoCs are energy efficient and are available in radiation
tolerant technologies, which renders them a suitable can-
didate for NN deployment in space missions.

One of the current trends in high performance FPGAs
based platforms is an increased focus of their use as
part of SoC devices, in which the flexibility of CPUs is
combined with the parallelism of programmable logic.
Manufacturers are therefore offering either FPGAs with
fabric processors or options to implement softcores like
RISC-V, LEON or MicroBlaze, which can be used to
host software applications. However, NN deployment to
FPGA-based SoCs typically follows a different, and often
a more intricate, workflow in comparison to traditional
CPU/GPU-based deployment scenarios, which imposes
additional complexity for developing space data systems
benefiting from NNs. The main root cause for this dif-
ference lies in the conceptual difference in programming
of FPGA-based devices. Additionally, in many cases the
margin of benefit for FPGA deployment relies on ex-
ploiting fixed-point arithmetic, which enforces additional
complexity in deployment, an occurrence that is typically
resolved by exploiting quantized and further optimized
models. Therefore, vendors and research communities

offer deployment frameworks to address these complexi-
ties and to simplify and automate the design and compi-
lation of efficient NN solutions for FPGA-enabled SoCs.
These tools exhibit a wide range of flexibility, design and
deployment automation as well as efficiency, and there-
fore, there is still a clear need for conceptual, qualitative,
and quantitative comparisons of these frameworks, espe-
cially considering the particular application needs and re-
quirements in space data systems.

In this paper, therefore we make the following contribu-
tions:

• We provide a survey of the state-of-the-art of work-
flows for developing CNNs and deploying them to
space data systems,

• We classify the deployment frameworks based on
compilation and design automation flow to Overlay
and Dedicated approaches,

• Using the above classification, we analyze and dis-
cuss characteristics of each deployment framework,
and

• We discuss the framework based on their tradeoffs,
ease of programming, and openness.

2. MODEL DEVELOPMENT TARGETING
FPGA-ENABLED SOCS FOR SPACE

Typical use cases of NNs for remote sensing missions in-
clude classification, object detection and segmentation.
Classical models like Residual [Convolutional Neural]
Network (ResNet), You Look Only Once (YOLO), and
Unet are examples of DNN families that are commonly
employed for these tasks. For example, algorithmic so-
lutions targeting the Airbus wind turbine patch classifica-
tion, Airbus aircraft detection and Airbus ship segmenta-
tion datasets are using the above mentioned models, re-
spectively. We use these models as targets for develop-
ment and deployment, and to assess the capabilities and
limitations of various tools in FPGA deployment.

While in the last couple of years, ML model development
(i.e., training) and deployment tools targeting FPGAs had
a lot of limitations; it can be observed that the develop-
ment environment is slowly maturing due to the emer-
gence of active development, interest, and support in the
community. Specifically, the support for the prominent
development frameworks, e.g., TensorFlow, Pytorch, and
Caffe, as development frontends, is becoming common-
place in many workflows. Therefore, FPGA-enabled SoC
deployment for space can benefit from standard imple-
mentations of particular models (ResNet, YOLO, and
Unet) in the above mentioned frameworks. Alternatively,
it is also possible to customize the algorithms with layers
that are more easily supported by inference tools, which
provides sufficient flexibility for the deployment and in-
vestigation of future AI-oriented approaches.



Regardless of the deployment workflow and the effi-
ciency of the developed solutions, the standard models
that we target in this project are implemented in at least
one of the above-mentioned frameworks, which simpli-
fies deployment to COTS systems significantly.

While using the same frontend for model development
sounds very promising, in comparison to CPU or GPU
deployment, the development workflow for FPGAs has
additional overheads that imply a supplemental develop-
ment effort:

• Deploying a model on FPGAs requires conducting
an investigation regarding the supported layers and
software components for the selected model within
the targeted deployment framework. The state-of-
the-art approach for dealing with this limitation re-
lies on either manual and rigorous investigation of
NN layers or analysis of errors in downstream de-
ployment workflow.

• Specific versions of the mentioned frameworks need
to be exploited as the downstream deployment tools
might impose strict version requirements. This im-
plies that using the latest features in the development
frameworks, e.g., TensorFlow, as well as the latest
models, layers, and formats might not always be a
viable option.

• The deployment workflows require to conduct the
development and training of the model in a cus-
tom frontend framework. For instance, deployment
of NN using the Fast, Scalable Quantized Neural
Network Inference on FPGAs (FINN) framework—
which uses an automated Hardware (HW)/Software
(SW) co-design process for deployment of NN on
COTS systems—requires porting and training the
NN to Brevitas. In such cases, the development
and deployment are fully coupled processes, and an
extra effort for porting the model into the custom
framework is expected in exchange for potential ef-
ficiency benefits.

In summary, in many development and deployment
frameworks, layer support, model format support, and
versioning consistency issues might require redesign,
simplification and modification, even re-implementation
and eventually re-training of the models in the develop-
ment framework.

3. FRAMEWORKS FOR DEPLOYING NNS TO
FPGAS

The implementation of NNs on FPGAs is a complex task.
FPGA-based systems are conventionally programmed us-
ing Register-Transfer Level (RTL) and Hardware De-
scription Language (HDL) design tools. However, pro-
gramming in such low levels of abstraction might be, in
many cases (including ML), cumbersome. Additionally,

ML developers may lack the knowledge of programming
in this level of abstraction, and learning the latter would
require an additional effort, which in many cases, might
imply dealing with steep learning curves. Therefore,
the state-of-the-art deployment tools are designed to pro-
vide higher levels of abstraction for programming. Con-
sequently, the deployment workflows typically rely on
model development in higher-level interfaces (e.g., Ten-
sorFlow in Python) which are compiled and deployed us-
ing lower abstractions, that then exploit High Level Syn-
thesis (HLS), model-based autocoding approaches and/or
pre-synthesized designs. This deployment and program-
ming scheme are significantly productive as they require
minimum RTL-level hardware design knowledge.

The usual workflow starts within the frontend, such as
Tensorflow or Pytorch, in order to develop a Deep Learn-
ing (DL) application, e.g., aircraft detection or ship de-
tection in a high-level programming tool.
The developed model is then passed through the design
and deployment frameworks. This typically involves var-
ious steps including quantization of the model, pruning of
the graph, and several optimization methods for deploy-
ment of the networks on an FPGA.

Next, an inference driver program is prepared using a
cross-compilation toolchain and is potentially further op-
timized with the help of just-in-time (JIT) compilation.
Deployment of the inference model on the target plat-
forms includes setting up the platform themselves, in-
cluding the Operating System (OS) images, drivers, and
runtime libraries to support execution of the application
on an FPGA. The new development flows introduced by
these frameworks pose major challenges to the space in-
dustry, as processes, checklists and standards not always
match what can be used in other industries. This will be
discussed further in the next paragraphs.

The complexity of NN deployment to FPGAs is not lim-
ited to the development of the actual design. Limita-
tions of resources on edge SoCs, and specifically energy
consumption and latency requirements of inference in
space applications, call for additional steps in the deploy-
ment pipeline. Therefore, the deployment frameworks
also deal with the additional complexity to employ fixed
point arithmetic and sparsity and optimize the networks.
However, the complexity of the task is conquered by ex-
ploiting automation for deployment in frameworks. Var-
ious frameworks proposed by different vendors and re-
searchers take different approaches to automate parts (or
all) of the deployment pipeline. With this perspective in
mind, we give an overview of the following tools avail-
able for NN deployment to FPGA-based SoCs for space
applications.

The frameworks and tools that will be compared in this
paper are Vitis AI, TVM VTA, Matlab DLP, FINN,
hls4ml and Vectorblox. The selection covers the most
mature tools, and tries to cover all vendors of process-
ing platforms commonly employed in space for high per-
formance processing. Two main categories are identified
and described in the next section. Other tools that have



been successfully employed for neural network inference
are mostly model-based tools that involve autocoders,
like Matlab C and HDL coders, or high level synthesis
tools like Catapult HLS. While certainly a very promis-
ing method, they typically involve a high expert knowl-
edge and cannot fully be included. For the purpose of
this paper they are considered as standard design tools
that can improve the design cycles, but are not specific
NNs and are therefore not considered.

4. FRAMEWORK CATEGORIES

Two conceptually different classes of approaches for the
deployment of NN on hardware exist:

• Dedicated Design Tools
(from now on addressed as ”dedicated” tools)

• Software Overlay Frameworks
(from now on addressed as ”overlay” tools)

Dedicated design tools have the goal of allowing users
a full integration of the workflow, from training to de-
ployment on hardware inside a single framework, while
still maintaing a good level of design space exploration
options in terms of quantization and hardware mapping.
They are typically fully deployed in programmable logic,
meaning that they require interfaces or control software
only to provide the input data and fetch the results. As
the NN layers and weights are stored in hardware, the
tool often shows limitations both in terms of model sup-
port and training frontends.
From the frontend point of view, the overlay approaches
are more mature and support most of the popular DL pro-
gramming tools, such as Tensorflow and Pytorch. This
is because they are first converted in a software represen-
tation and then the supported layers are accelerated us-
ing processing units, interfaced utilizing specific drivers.
On the other hand, only dedicated approaches (specifi-
cally FINN) support custom deployment scenarios with
quantization- and fault-aware training, which are more
suitable for space-bound applications in order to realize
high accuracy and fault-tolerance, given the limited com-
puting and memory resources.
As Vitis Artificial Intelligence (AI) is the most mature
overlay tool and FINN supports the custom deployment
scenarios, in our publication we mainly focus on investi-
gation of Vitis AI and FINN.

As overlay tools typically use programmable logic accel-
erators, they are typically bound by the vendor to specific
processing platforms. Therefore, it is to be noted that Vi-
tis AI is a proprietary tool for Xilinx FPGAs, while Vec-
torblox is the proprietary Microsemi counterpart. Matlab
DLP (which allows the inference of a MathWorks propri-
etary IP) supports both Xilinx and Intel FPGAs, while
Microsemi FPGAs are currently not supported. TVM
VTA, instead, is an open source tool, that allows C++
inference and to accelerate the algorithm implementation

using vendor specific IPs from Xilinx or Intel. The latter
is summarized in Table 1.

Table 1: Frameworks and categories evaluated in this
survey

Design Flow Support Development Type
Vitis AI Xilinx Proprietary Overlay
TVM VTA Xilinx, Intel Scientific Overlay
Matlab DLP Xilinx, Intel Commercial Overlay
FINN Xilinx Scientific Dedicated
hls4ml Xilinx Open-source Dedicated
Vectorblox Microsemi Proprietary Overlay

4.1. Dedicated Approaches

In dedicated solutions, IP-cores from a library are con-
figured and connected to produce a specific hardware ar-
chitecture for every NN. The deployment for dedicated
tools typically does not rely on a compiler. The generator
of the IP core is not an optimizing compiler, in the sense
that it applies generalized transformation passes, but it
is able to project a high-level representation in a space
closer to the hardware. An example of this is constituted
by the FINN-workflow, developed by Xilinx. In standard
scenarios, IP core generated by the tools is used solely by
one NN. This approach does not result in flexible, generic
and reusable solutions, as the generated hardware design
is specifically tailored to the NN architecture, thus intrin-
sically hindering a reprogramming of the accelerator dur-
ing runtime, as the whole programmable logic has to be
reconfigured. On the other hand, this approach is less de-
pendent upon runtime libraries on the processor side, and
therefore the accelerator is fully able to read and write to
external memories during runtime, without any signaling
or driving needs from the host (OS).
Hls4ml and FINN, with its libraries FINN-L (for recur-
rent LSTM Networks) and FINN-R (for Residual Net-
works) can be classified among the dedicated hardware
solutions. Tools like (Matlab) HDL coder and Catapult
HLS, as already introduced previously, are very similar
as they allow also for a model that is fully computed in
hardware, but have very different design flows as they are
not dedicated specifically for neural networks.

The main differences with regard to overlay methods are
related to the fact that in such tools the layers are typically
converted to an HLS design, allowing for the composition
of a stitched-IP for the whole network. Further optimiza-
tion also happens during synthesis, which can cross layer
boundaries.
Dedicated accelerators typically still require to add soft-
ware or DMAs in order to acquire the data to be processed
by the model, but proprietary libraries bound to an oper-
ating system, which are typical of overlay approaches can
be avoided. While this means that addional design effort
in terms of application wrappers is required for this tools,
avoiding proprietary libraries is seen as a great advantage,
especially in the space sector.



4.2. Overlay Approaches

While the dedicated implementation approaches rely on
low-level design and synthesis tools, overlay architec-
tures consist of one or more programmable accelerator
cores instantiated in the FPGA fabric to improve the
execution time of tensor operation instructions. Over-
lay approaches adopt the coprocessor-based architecture,
where a heterogeneous flow is used to drive the infer-
ence computation and accelerate it on an FPGA fabric
that functions as an accelerator. The instantiation of a
programmable computation engine is controlled by the
host processor. The computational engine is able to ex-
ecute several NN layers in parallel. Usually it consists
of a controller and Processing Elements (PE) arrays. A
symbiotic relationship exists between the host and the
hardware accelerator, which receives instructions from
the host and performs them accordingly. The latter in-
volves scheduling single operations in the PE-Array and
loading the respective parameters, prior to the beginning
of the real computation. In spite of the fact that in many
deployment scenarios, existing accelerator designs (e.g.,
provided by vendors) can be employed, further tuning of
the overlay design is often possible and promising: the
overlay designs are usually parameterized and can be im-
proved based on the demands of the particular inference
workload. This process requires further analysis of the
overlay design and the demands of running NNs and re-
synthesis of the final accelerator implementation. Fur-
thermore, in contrast to dedicated approaches, program-
ming of overlay architectures relies on compilation of the
NN to generate instructions to be executed on the cores.
It is worthy of notice that, inference execution is typically
managed by a trigger application running on the host with
the support of runtime libraries and drivers in the operat-
ing system.
Vitis AI, Versatile Tensor Accelerator (VTA), and Matlab
DL HDL toolbox can be characterized as Overlay ap-
proaches.

The degree of flexibility that these architectures present
is elevated, due to the fact that if the computation system
proofs ill-suited, or unable, to execute a certain operation,
as it might be caused by constrains of various nature, the
computation can be executed on the accelerator.

4.3. Discussion

Summarizing, all the Overlay approaches support Ten-
sorflow and Pytorch model formats as inputs. Addi-
tionally, the deployment of Open Neural Network Ex-
change (ONNX) models is also straightforward for these
options, as it can benefit from standard conversion tools.
However, as we discussed before, supporting the model
format does not necessarily mean that the deployment
of all models with such formats to COTS SoCs is pos-
sible: for instance, a particular TensorFlow (.pb) model
can encounter problems due to layer support in, e.g., Vi-
tis AI. Table 2 summarizes the nuances of layer-support
and quantization offered by every of the analysed tools.

On the other hand, the Dedicated approaches are less flex-
ible in model support: FINN only supports Pytorch (.pt)
models that are created using Brevitas as a frontend. High
Level Syntheis for Machine Learning (hls4ml), also only
supports Keras (.h5) models that are generated with QK-
eras. In the case of dedicated approaches, the application
developer does not need to worry about the support of
network layers by the downstream deployment workflow,
as the model is trained in the compatible frontend. How-
ever, this implies an higher porting effort, as discussed
before. In typical development scenarios this implies that
when custom models are employed, these have to be re-
designed in a new training front like PyTorch.

The output in each deployment workflow is in a unique
format, with the exception of VTA and Vitis AI. This
is rooted in the fact that VTA uses a similar workflow
to Vitis AI. The output model of Vitis AI is an xmodel
file which includes the serialized graph object. This ob-
ject is combined with the Deep [learning] Processing Unit
(DPU) IP at a later stage for execution.
Matlab stores the resulting models in a specifically tai-
lored file format, whereas FINN stores the output model
as a customized ONNX file with an extension for quan-
tization annotations to support storage of integers with
small precision.
The output of hls4ml is an HLS code representation that
is later synthesized and deployed.

Overall, regardless of whether a tool is using an Overlay
or Dedicated approach for design, the output format is not
portable to other platforms.
Overlay approaches use a binary file format that typically
is a container for both the host and accelerator specific
codes to facilitate execution on SoC platforms. This im-
plies that Overlay approaches would require running an
OS along the required drivers and runtime libraries to
command the inference acceleration on the FPGA fabric.
However, dedicated approaches rely on pure bitstreams,
which can be executed without the need for an OS.

5. SUMMARY

This paper presented an overview on the different cate-
gories of frameworks for NN inference. In the first place,
the need for such tools to assist the deployment of ML
applications on space data systems is introduced, with
FPGA based SoC being the most promising chips for NN
inference on spacecraft. An analysis is then performed
on development and deployment of NNs and different
frameworks available. The tools are categorized in soft-
ware overlay and dedicated design tools to identify sim-
ilarities and differences. The advantages and disadvan-
tages of each workflow are described, with the goal of
being able to identify a suitable framework for each use
case in future spacecraft missions employing artificial in-
telligence.



Table 2: Layer and quantization support

Design Flow Convolutional Residual Recurrent Skip Quantization
Vitis AI Hardware Hardware Software Yes Fixed (8 bit)
TVM VTA Hardware Hardware Software Yes Fixed
Matlab DLP Hardware Hardware (Expected) Yes Fixed
FINN Hardware Hardware (Discontinued) No Custom
hls4ml Hardware Hardware No No Custom
Vectorblox Hardware Hardware No Yes Fixed (32 bit)
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