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Abstract
Compute in space, e.g., in miniaturized satellites, requires dealing

with special physical and boundary constraints, and requirements,
including the limited energy budget. These constraints impose strict
operational conditions on the on-board data processing system and
its capability in dealing with sophisticated workloads suchlike Ma-
chine Learning. In the meantime, the breakthroughs in Machine
Learning based on Deep Neural Networks in the last decade promise
innovative solutions to drive the space industry forward and expand
the functional capabilities of on-board data processing. However,
due to the aforementioned special requirements, performance- and
power-efficient, and novel solutions and architectures for deploy-
ing Machine Learning via, e.g., FPGA-enabled SoC, particularly
Commercial-Off-The-Shelf (COTS) solutions, are gaining signifi-
cant interest in the space industry.

In this context, it is essential to conduct extensive benchmarking
and feasibility analyses in different aspects for deploying Machine
Learning to space: specifically, such feasibility analyses would re-
quire investigation of frameworks for programming and deploy-
ment as well as the deployment of various models and datasets.
Additionally, feasibility analyses of real-world use cases and appli-
cations are needed. To this end, a research and development activity
is funded by the European Space Agency (ESA) General Support
Technology Programme and is led by Airbus Defence and Space
GmbH with the goal of developing a Machine Learning Application
Benchmark (MLAB) that covers the benchmarking and feasibility
aspects mentioned above.

In this invited talk, we provide an overview of the MLAB project
and discuss development and progress in various directions, in-
cluding framework analyses, model, and dataset investigation. We
elaborate on a benchmarkingmethodology developed in the context
of this project to enable the analysis of various hardware platforms
and options. We specifically focus on a particular use case of aircraft
detection as a real-world example and provide quantitative anal-
yses for various performance and accuracy indicators including,
accuracy, throughput, latency and power consumption.
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1 Introduction
With continuing advances of modern Machine Learning (ML)

technologies such as Deep Neural Networks (DNNs) and especially
Convolutional Neural Networks (CNNs), space applications can
take advantage of the capabilities of models and algorithms. This
helps to extend the functionalities of on-board computers in satel-
lites for various applications such as, e.g., Earth observation [2] or

optical guidance, navigation and control (GN&C) [1]. Therefore,
the European Space Agency (ESA), as a player in the Space industry,
is interested in deploying ML workloads to on-board computers.

Deploying ML inference to on-board computers of satellites has
multiple advantages, including saving the on-board storage, and
saving the limited bandwidth between satellites and ground stations.
Additionally, it enhances the capabilities of on-board computers
for data-driven real-time decision making. However, the energy
consumption and dissipation demands of satellite missions are
extreme: 1) the energy for ML inference needs to be supplied by the
limited solar panels, and 2) the generated heat needs to be radiated
away from the satellite.

In this context, there is a clear need for the development of ML
inference benchmarks for various Space applications and models,
that enable the feasibility analysis of various hardware solutions
and configurations based on real-time performance and power
efficiency requirements.

In recent years, Field-Programmable Gate Arrays (FPGAs) are
getting rising attention for the acceleration of various ML work-
loads, in particular, ML inference [3]: Due to the increasing avail-
ability of both radiation-tolerant devices and Commercial-Off-The-
Shelf (COTS) solutions. Moreover, the unique features of these de-
vices, e.g., low power consumption and hardware (re)programmability,
have drawn the attention of the Space industry to investigate these
accelerators further. However, despite the rising attention and the
increasing use of FPGA-based inference accelerators, there is little
work on benchmarking ML inference on space-capable hardware
with a focus on space-specific resource limitations.

In summary, there is a need to develop benchmarking method-
ologies and systems for the investigation of ML in Space on space-
capable hardware that are interesting to the industry. This enables
the space industry to systematically conduct feasibility analyses
and evaluate the trade-offs of various hardware platforms and con-
figurations, and contribute to the design of on-board computers for
future missions.

2 Framework Options
We start by elaborating on the feasibility aspect and challenges

associated with programming and deploying ML solutions using
state-of-the-art developments and deployment frameworks.

Typical use cases of Neural Networks for remote sensing mis-
sions include classification, object detection, and segmentation.
Classical models like Resnet, Yolo, and Unet are examples of DNN
families that are commonly employed for these tasks. For example,
ML-enalbed solutions targeting the Airbus wind turbine patch clas-
sification, Airbus aircraft detection, and Airbus ship segmentation
datasets are using the above-mentioned models, respectively.
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For the development of the benchmark, we use these models as
targets for development and deployment, and to assess the capabil-
ities and limitations of various tools in FPGA deployment.

While in the last couple of years, ML model development (i.e.,
training) and deployment tools targeting FPGA had a lot of limi-
tations; it can be observed that the development environment is
slowly maturing due to the emergence of active development, in-
terest, and support in the community. Specifically, the support for
the prominent development frameworks, e.g., TensorFlow, Pytorch,
and Caffe, as development frontends, is becoming commonplace
in many workflows. Therefore, FPGA-enabled SoC deployment for
space can benefit from standard implementations of particular mod-
els (Resnet, Yolo, and Unet) in the above-mentioned frameworks.
Alternatively, it is also possible to customize the algorithms with
layers that are more easily supported by inference tools, which
provides sufficient flexibility for the deployment and investigation
of future ML-oriented approaches. Regardless of the deployment
workflow and the efficiency of the developed solutions, the stan-
dard models that we target are implemented in at least one of
the above-mentioned frameworks, which simplifies deployment to
COTS systems significantly.

While using the same frontend for model development sounds
very promising, in comparison to CPU or GPU deployment, the
development workflow for FPGA has additional overheads that
imply a supplemental development effort: 1) Deploying a model on
FPGA requires conducting an investigation regarding the supported
layers and software components for the selected model within the
targeted deployment framework. The state-of-the-art approach for
dealing with this limitation relies on either manual and rigorous
investigation of NN layers or analysis of errors in downstream
deployment workflow. Therefore, specific versions of thementioned
frameworks need to be exploited as the downstream deployment
tools might impose strict version requirements. 2) The deployment
workflows require conducting the development and training of
the model in a custom frontend framework. In such cases, the
development and deployment are fully coupled processes, and an
extra effort for porting the model into the custom framework is
expected in exchange for potential efficiency benefits.

In summary, inmany developments and deployment frameworks,
layer support, model format support, and versioning consistency
issues might require redesign, simplification, modification, even
re-implementation, and eventually re-training of the models in the
development framework.

3 Benchmarking Methodology
Next, we focus on the benchmarking aspects of ML in Space. We

identify the investigation of development frameworks and various
SoC platforms as the core part of feasibility analysis. In particular,
we are targeting benchmarking for a special set of hardware and
software frameworks. In addition, Space tasks and scenarios are
very special cases with the formerly-mentioned special require-
ments. Therefore, existing benchmarking methodologies and in-
frastructure (e.g., MLPerf Inference) are not fully aligned for our
use case. While reproducibility, plays an important role in our
benchmarking methodology, specification of the standard inference
benchmark driver interface is less of a concern, as most of the target
platforms offer a similar architecture. Therefore, we can rely on

benchmark drivers and scripts that are developed and designed
separately for each use case.
Benchmark Design: We identify a particular space use case by
defining a scenario which determines whether the use case deals
with a batching or streaming scenario, as well as a task that is used.
Each benchmark instance specifies a particular scenario and a task
to which the results (i.e., submission) should adhere. In addition,
each benchmark instance specifies a particular set of configurations
and performance requirements which are then used for verification.
Scenarios: In order to cover the realistic inference scenarios for
space applications, we define two scenarios. These scenarios aim
at performance evaluation for various hardware while considering
feeding the input data to the accelerator with either batches or
streams.
Tasks: We are considering various tasks associated with machine
learning in space. The main focus is on vision tasks, e.g., classi-
fication and object detection, however, we are also considering
anomaly detection tasks as well. We are also binding a dataset and
a model to a particular task to prevent the additional complexity of
in configuration of datasets and models.
Submission and VerificationWe gather and organize a database
of benchmark records that are successfully prepared, using a sub-
mission system. We propose a submission system as the user inter-
face for the benchmark developers to provide the results of their
benchmarks. Therefore this submission system includes a simple
database for record and metadata keeping as well as checker scripts
that aim at assessing the satisfaction of performance requirements
of a benchmark instance.

4 Aircraft Detection Use Case
In the context of machine learning in space, object detection tasks

have great importance, as they can potentially serve as one of the
critical building blocks in, e.g., navigating and control. Therefore,
as a basic example of deep learning model for Space, we specifically
focus and work on object detection tasks. Since Yolo model [? ] is
one of the most popular, accurate, and efficient object detection
models, we define our object detection benchmark, based on this
model. To base our discussions on a realistic deployment scenario
and provide a real-world motivated benchmark, we use the Airbus
Aircraft detection dataset.

In this talk, we further provide the details of a benchmark in-
stance associated with aircraft detection and a particular submis-
sion to this benchmark. We further analyze the performance trade-
offs associated with various deployment configurations and perfor-
mance metrics.
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