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Abstract
Special requirements of space missions, including limited
energy budgets and radiation tolerance, impose strict oper-
ational conditions on on-board data processing system. Con-
sequently, deployingMachine Learning (ML) inference to data
processing systems in satellites introduces architectural and
practical challenges. In this position paper, we discuss these
challenges of using FPGAs for the acceleration of ML infer-
ence as a main trend in the evolution of on-board data pro-
cessing. We envision the rising need for the development of
benchmarks and key performance indicators to character-
ize space-enabled FPGA-based solutions for accelerating ML
inference for satellite-based platforms.

Keywords: Machine Learning Inference, FPGA-based Accel-
eration, Inference Benchmarking, In-Orbit Data Processing.

1 Introduction
With continuing advances of modern ML technologies such
asDeep Neural Networks (DNNs) and especiallyConvolutional
Neural Networks (CNNs), space applications can adopt and
take advantage of the capabilities of models and algorithms.
The European Space Agency (ESA) is interested in deploying
ML inference workloads to on-board data processing systems
for various applications such as, e.g., Earth observation [8] or
optical guidance, navigation and control (GN&C) [1]. In these
scenarios, ML models are trained on the ground and then
deployed to satellite-based platforms for on-board inference.
One of the main reasons for deploying such on-board ML

inference is the limited bandwidth between satellites and
ground stations. As a consequence, it is typically necessary
to limit satellites to take and transmit detailed pictures of
selected regions only with a subset of sensor modes, as it is
impossible to cache and downstream all available observation
data. With on-board inference capabilities enables a real-time
decision on what to focus on and what to stream down to
Earth allowing innovative data-driven observation scenarios.
This enables us to increase the “scientific content of the down-
loaded data” [8], while fitting within the practical transition
limits.
However, the power efficiency demands of satellite mis-

sions are extreme not only due to the fact that the energy
needs to be collected from solar panels, but also that the heat

generated needs to be radiated away from the satellite, which
is hard to accomplish due to the vacuum in space despite low
temperatures.

In this context, there is a clear need for the development of
ML inference benchmarks for various space applications and
models, that focus on characterizing real-time performance,
power efficiency.
Despite little attention in the past [10], recent years have

seen a rising attention on Field-Programmable Gate Arrays
(FPGAs) for the acceleration of various ML workloads, in par-
ticular for spaceapplications, due to the increasingavailability
of both radiation-tolerant devices and Commercial-Off-The-
Shelf (COTS) solutions. Specifically, research shows promis-
ing results for the deployment ofML inference on FPGAs [12].
Moreover, the unique features of these devices, e.g. low power
consumption and HW (re)programmability, have drawn the
attention of space industry practitioners to investigate these
accelerators further. However, despite the rising attention
and the increasing use of FPGA-based inference accelerators,
there is little work on benchmarking ML inference on such
radiation-tolerant, space-capable HWwith their specific re-
source limitations as well as specific model properties.

In summary, there is a need to define the key performance
indicators for spaceML applications, togetherwith the design
and implementation of a benchmark system covering these
indicators. This will enable the community to systematically
evaluate the trade-offs of various approaches. This position
paper focuses on such techniques and benchmarking systems
for FPGA-based inference in space applications, targeting
space-enabled HW and SW, filling a gap for both for a partic-
ular program funded by ESA, but also providing a long-term
tool for similar deployment scenarios in thewider community.

2 Emerging Inference Accelerators and
ML Inference DevelopmentWorkflow

To cope with the requirements of future space missions, the
space industry tends to design and exploit reconfigurable and
hybrid architectures for data processing, exploiting multi-
ple embedded compute nodes. This reconfigurable and hy-
brid data processing promises in-orbit deployment of a wider
range of science and intelligence through the use of ML in-
ference. CPUs, GPUs, DSPs, and reconfigurable FPGAs are
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Figure 1. Illustration of the workflow for the development of
FPGA-based inference accelerator using high-level and ven-
dor tools for automatic HW design and model quantization.

the drivers for the next generations of on-board data pro-
cessing [1, 4, 6]. However, in the context of space missions
FPGAs are preferable mainly due to low power consump-
tion, and availability of radiation-tolerant solutions. For ex-
ample, NASA’s SpaceCube v2.0 uses radiation-hardened re-
configurable FPGA-based acceleration in data processing sys-
tems [9]. Another example is the appearance of systems based
on radiation-mitigated COTS solutions, such as MPSoCs and
ACAPs that provide hybrid and flexible compute paradigms,
and are gettingmore attention by the space industry [6]. Thus,
it is important to design inference benchmarks on top of these
solutions to characterize their performance.

Recent developments have significantly reduced the effort
for the deployment of ML inference, through the automation
of the HW design process using supplementary development
kits provided by the vendors (see Section 1), specifically for
commercial COTS solutions. They provide versatile platforms
that satisfy most of the data processing requirements in fu-
ture space missions and hence offer suitable target platforms
for the realization of the ML inference benchmarks for space
applications. Figure 1 illustrates a workflow for the devel-
opment of ML inference solutions. This workflow includes
the training phase to cope with the in-progress and contin-
uous development of newmodelsand fine-tuning of existing
models for space applications. This phase is performed using
high-level tools, e.g., Tensorflow, Caffe, and Pytorch on HPC
systems, and exploits parallel training on multiple CPU- or
GPU-based nodes to cope with the high computational needs
as well as with the large amount of training data. After train-
ing, the models are pruned and converted to exploit simpler
data formats, e.g., float16, and after verification (e.g., offline
testing) of the convertedmodels and calibration in a so-called
retraining phase, models are linked to pre-synthesized soft
IPs designed by the vendors or customized IPs to be deployed
to the board for acceleration.

Training and conversion can be executed on any platform
that provides a backend for high-level tools, like e.g. Ten-
sorflow. However, the rest of the workflow requires vendor
support. Nowadays, vendors implement this workflow in

proprietary toolsets for their specific HW platforms. For in-
stance, Xilinx implements thisworkflow inVitisAI1, and Intel
implements it in OpenVINO2. On the other hand, there are
also open-source solutions, e.g., ChaiDNN for specific targets.
However, most of the solutions typically include the same
steps. Aside from the above workflow, experimental tools,
such as Brevitas [7] and FINN [12] offer a different work-
flow (Brevitas uses quantized models at the point of training).
However, a benchmarking system based on the workflow in
Figure 1 covers that as well.
Although using the high-level tools for HW design might

have downsides, it significantly boosts the prototyping speed
for benchmarks. Moreover, it brings in benchmarks with a
broader range of deployable ML inference models for space
applications on the FPGA-based accelerators.

3 Challenges of In-Orbit ML Inference
Space missions can benefit fromML inference for various use
cases, including optical Guidance, Navigation and Control
(GN&C) [1] or satellite imaging [4]. However, deploying ML
inference to on-board systems requires the consideration of
various architectural and systemdesign challenges, including:
(1) limited in-orbit compute and memory resources, (2) fault
mitigation, (3) HW reconfigurability of the inference engine
(4) strict energy and heat budget.

Limitedon-boardresources. Themaindriver foron-board
processing in Earth observation satellites is the limited down-
stream capacity. Currently, data is streamed mainly over the
poles and satellites trade-off a low-resolution continuous
capture of a pass with a selective acquisition in very high
resolution, but with limited spatial extent [4].
Being able to deploy a data-driven and machine-learning

enabled subsystem in space in order to decidewhat to capture
and what to transmit down to Earth would be a great advan-
tage and lead tomore valuable information being transmitted
to Earth.
However, especially high-resolution sensors create high

data volumes and, thus, need very specialized computational
systems given the limited energy budget and real-time con-
straints. Furthermore, the data acquired on the satellite is
comparably far away from analysis-ready data limiting the
applicability of MLmodels to very complex raw data.

This suggests the benefits in the more extensive use of the
on-board parallel HW and accelerators for inference process-
ing both for preprocessing as well as for ML inference. Con-
sequently, we further observe the deployment of accelerators
with low-power consumption, such as Intel Movidius NCS,
and Xilinx Virtex-5QV FPGAs, in conjunction with multipro-
cessors and DSPs [1]. This yields a hybrid parallel computing
paradigm suitable for the deployment of ML and non-trivial

1Xilinx’s development platform for AI inference, link.
2Intl’s model optimization and deployment toolkit, link.
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preprocessing and signal processing steps for the on-board
data processing.

Fault-mitigation. For in-orbit ML, both the input data
and the processing platform are exposed to faults. radiation-
hardened HWcan be used at the cost of reduced performance,
and researchers are now evaluating radiation-hardened FP-
GAs,aswell asnon-radiation-hardened accelerators, e.g.,GPUs,
and COTS solutions, and are considering various SW and
HW-based mitigation approaches [13], where fault mitiga-
tion (e.g., scrubbing and modular redundancy) is embedded
into the AI inference engine. Also, recently more comprehen-
sive benchmarks are developed for the comparison of various
parallel workloads on radiation-hardened multi-core space
processors [3]. However, the benchmarks in this work do
not cover ML inference and HW accelerators. On the other
hand, the existing benchmark coverage for ML inference for
FPGA-accelerated solutions is limited, and within this con-
text, it is essential to consider fault tolerant FPGA-accelerated
solutions and various approaches of fault mitigation.

Reconfigurability. Another architectural feature for fu-
ture on-board data processing systems is HW reconfigura-
bility [6], where inference HW can be adapted according
to the mission requirements. Moreover, reconfiguration has
the additional advantage in space applications enabling the
model fine-tuning using the data even within missions. In the
specific case of Earth observation or anomaly detection, by
having fine-tuned models, e.g., seasonal effects can be taken
into account in a better way. In this context, FPGAs promise
efficient and reconfigurable systems to adapt functionality in
various missions [2].

Power/energy/heat efficiency. ML inference, especially
for deep convolutional models, is typically compute- and
therefore power/energy-hungry. On the other side, space-
crafts are extremely limited in terms of energy due to the
limited size of solar panels. Additionally, the on-board data
processing systems have to be cooledwithout fans, which lim-
its the acceptabledissipatedheat. Especially on small satellites
for Earth observation, overall payload power is operated un-
der 100Watts. As a consequence the use of low-power acceler-
ators in space missions becomes essential. Benchmarks must
therefore be able to evaluate the overall power consumption
trade-offs among different solutions. For instance, running
the additional inferencemodule consumesmore power, while
the communication module requires less power to transmit
only intelligently-reduced or a selected subset of representa-
tions instead of raw data. Consequently, benchmarks should
be able to evaluate the overall power consumption footprints
to characterize on-board ML inference solutions properly.

Integration into industryworkflow. As FPGAs are con-
ventionally programmed using manual low-level RTL or HLS
designs, which require expert knowledge in HW design. In
the case of ML, the target tasks are very specific, but they

require an additional level of expert knowledge inML. In addi-
tion, due to the continuous and rapid evolution ofmodernML
models, specifically CNNs, low-level manual design is very
cumbersome and inefficient as it requires manual adaptation
of the designs for each model. As a result, manual design is
very expensive and only performed for special tasks. This has
motivated researchers and vendors to investigate the automa-
tion of the HW design process for MLworkloads on FPGAs,
which significantly reduces the cost of the developmentwhile
allowing for flexible HW designs. This automation is also
helpful for designing optimal inference accelerators, and en-
abling evaluation of trade-offs for different design decisions,
and realizing flexible and adaptable designs, e.g., according
to the requirements of different missions.

4 Workloads for Space Applications
Inference benchmarks should cover a diverse set of algorithms
including feature extraction, object detection, classification,
tracking, and change detection. This ensures that various
space use-cases (see Section 1) are represented in benchmarks.
Another aspect corresponding to the representative work-
loads is the diversity of ML models. This diversity ensures
the coverage of various models with different computational
complexity and memory requirements. As many space ap-
plications [5] often adopt and use well-stablished models,
deployment of various classical convolutional models with
different network architectures, from light-weight models
such as MobileNetV2 (14MB) to more complex ones such
as VGG19 (549MB), need to be evaluated. Moreover, space
applications rely on different datasets than classical ML appli-
cations. So benchmarks need to rely on publicly available and
standardized space datasets [5, 11, 14] and splits [5] as well as
models to ensurewide reproducibility of any achieved results.
Further, the benchmarks should cover various types of

inference scenarios [10]. These scenarios represent various
schemes in arrival and dispatching of queries from the appli-
cations to the inference module, e.g., streams of single queries,
batch queries, latency-insensitive streams of batch queries,
latency-sensitive random single queries. These various sce-
narios are diverse and cover the various needs of different
space applications, and can be implemented in the benchmark
applications as an inference load generator component and,
e.g., be executed on the CPUs of MPSoCs.

Due to practical in-orbit limitations and the possible need
for redundancy for fault mitigation requirements, reduced-
precision computation is seen as one valuable approach and
needs to be covered in benchmarks. Here, FPGAs offer flex-
ible reduced-precision models. However, practical domain-
specific accuracy measures and performance metrics for vari-
ous scenarios, e.g., Earthobservation,need tobeestablished to
characterize the tradeoffs. In this context various approaches
inreduced-precisionmodels, i.e.,withreduced-precisionweights
and activations [12], and lossy data representations, covering
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Figure 2. Illustration of inference benchmarking system for
FPGA-based systems. We color-coded various subsystems
of the benchmarking system.

awiderangeofaccuracyandperformance trade-offs, incombi-
nation with fault mitigation approaches need to be evaluated.

5 Benchmarking Systems and Practical
Challenges

Figure 2 illustrates a possible realization of the on-board in-
ference benchmarking system. This system is designed based
onMLPerf inference benchmarking [10] method and is aug-
mentedwith theXilinxVitisAI system3, andapowermeasure-
ment component. It uses an HPC Backend for data prepara-
tion and model training, which can benefit from distributed
and accelerated computing. The benchmarking system fur-
ther consists of a Design and Deployment subsystem for
HWdesign and preparation ofML inferencemodels. This sub-
systemcan be realized in a powerfulworkstation or in anHPC
backend exploiting data parallelism for the execution of the
benchmark. Performance evaluation component helps to im-
plement performance metrics, e.g., domain-specific accuracy,
FPGA resource utilization and efficiency. The Test Unit in-
cludes the target board (here Xilinx MPSoC) and executes the
Load Generator and benchmark driver while offloading parts
of the computation to the on-board FPGA. The load generator
is used to simulate the loads for radiation testing as well as
various query scenarios. Power and energy measurements
are performed in an external subsystem. This system enables
exploration of the design space of inference deployment to
FPGAs (see Section 5).

The development of reliable and reproducible FPGA-based
accelerationusing this benchmakring systemrequires dealing
with a number of practical challenges:

Performancebottleneck in feeding theFPGAchip. The
benchmarking system in Figure 2 relies on a load (query) gen-
erator and a database to simulate the diverse query scenarios
discussed in Section 4.However, the deployment of a load gen-
erator on the low-end on-board CPU (e.g., in MPSoC COTS)
might not saturate the FPGA chip, resulting in suboptimal
benchmarking for batch scenarios. Further, on-board load
generation might affect the board’s power footprint, which

3Similar designs can be done for the platforms of other vendors.

is not desired for benchmarking. As a result, the benchmark-
ing systemmight need to deploy an external load generator
that interacts with the COTS board. In this way, both passive
payloads receiving data from sensors and active processing
units fetching data from the mass memory of the spacecraft
can be evaluated.

Consistent power measurement. As discussed in Sec-
tion 5, the inference benchmarks should be able to evaluate
the energy footprint for various inference tasks. However,
the evaluation of static and dynamic on-chip and off-chip
power measurements can be a difficult task, and vendors
rely on tools that exploit power consumption estimators and
analyzers (such as Xilinx XPE). For this reason, deriving en-
ergy footprints for the boards using vendor-agnostic external
power measurement units to evaluate the power swings dur-
ing benchmarking is a more straightforward and consistent
approach. This requires the deployment of additional external
infrastructure for powermeasurement during the installation
of the HW boards.

Hardware accelerationapproaches. Acceleration ofML
inference using FPGAs is an active topic of research and de-
velopment. Various approaches, e.g., Vitis AI using DPUs,
DNNDK, and FINN need to be evaluated, which requires a
detailed study of vendor IP designs. In an edge implementa-
tion, the tool choice and the designer’s optimization effort can
yield very different results in terms of performance. For this
reason, HW acceleration approaches and how they integrate
into industry workflows have to be taken into account in the
benchmark definition.

Consistent offloading of computation. Another practi-
cal challenge is tomaximize the amount of offloaded computa-
tion to the accelerators: current libraries rely on the on-board
CPUs for image decoding and decompression. While offload-
ing these computations, using vendor accelerated libraries
can be beneficial, it adds another dimension of complexity
for benchmarking. The developed benchmarks should cover
these and treat them consistently.

6 Concluding Thoughts on Impact
In this position paper, we presented the challenges associated
with the deployment of ML inference for space applications
and theneed for thedevelopmentbenchmarks.Wehighlighted
the appearance of FPGA-based accelerators and COTS solu-
tions as amain trend in on-board data processing systems and
highlighted the rising need for the development of ML infer-
ence benchmarks for space applications. These benchmarks
enable systematic evaluation of the trade-offs of various ap-
proaches of inference accelerators for space applications and
pave the path for future designs. Besides the direct impact
on the space industry, such benchmarks can be adapted and
applied to other embedded, resource-limited platforms with
similar requirements.
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