
EUROPEAN WORKSHOP ON ON-BOARD DATA PROCESSING (OBDP2021), 14-17 JUNE 2021

MACHINE LEARNING APPLICATION BENCHMARK FOR IN-ORBIT ON-BOARD
DATA PROCESSING

Max Ghiglione1∗, Amir Raoofy2, Gabriel Dax2, Gianluca Furano3, Richard Wiest1,
Carsten Trinitis2, Martin Werner2, Martin Schulz2, Martin Langer4

1Airbus Defence & Space GmbH
2Technical University of Munich

3European Space Agency
4Orbital Oracle Technologies GmbH

ABSTRACT

This paper introduces the MLAB project, a research and
development activity funded by ESA General Support
Technology Programme under the lead of Airbus Defence
and Space GmbH with the goal of developing a machine
learning application benchmark for space applications.
First, the project is introduced, and examples of appli-
cations are described including their design challenges.
The benchmark specifications is described, and different
processing platforms to be submitted are presented. Fi-
nally, initial performance results for first submissions are
shown as examples.

1. INTRODUCTION

Machine Learning (ML) is increasingly used in space
demonstration missions, like e.g. ESA’s φ-sat [20],
paving the way towards its mainstream use in Smallsats
and in large institutional projects. This trend is fueled
by the use of Commercial-Off-The-Shelf (COTS) solu-
tions and the improvement of tools for ML deployment
on radiation-tolerant processing units. The satellite in-
dustry has been looking at these developments with great
interest.

For successful deployment and use, however, we are fac-
ing three main challenges: 1) on-board spacecraft hard-
ware has limited processing capabilities, requiring algo-
rithms to be optimized for a specific embedded hardware
platform; 2) the integration into the industry workflow re-
quires new sets of tools and interactions between devel-
opers; and 3) the available datasets in terms of open ac-
cessibility and reusability for space missions are limited,
as data is either proprietary or poorly labeled. To address
these challenges, and to enable the needed in-depth eval-
uation of these techniques for use in on-board applica-
tions, we need a comprehensive benchmarking approach
specifically targeting the challenges connected to ML in-
ference applications in space.

∗Contact: max.ghiglione@airbus.com

The commercial word has already pioneered such bench-
marks, in particular with MLPerf [18] and its embedded
counterpart, proving the importance of such a method for
ML inference.

In the frame of the MLAB1 project, Airbus Defence &
Space, Technical University of Munich, and OroraTech
are working on developing a novel ML inference bench-
marking approach based on the commercial solutions and
MLPerf method [18].

This approach provides the ability to simplify the
comparison of algorithms in the early phases of their
development, enabling engineers to predict the nec-
essary processing power for the intended applications
(1). Further, combined with appropriate benchmarking
frameworks and codes, it will enable the investigation
of various software tools, diverse and custom reconfig-
urable IP designs, and COTS solutions for ML inference
targeting on-board data processing (2). Finally, we will
rely on public datasets or publish the needed datasets,
supporting the wider research in the field and enabling
full reproducibility (3).

The benchmark suite will cover a diverse set of algo-
rithms, e.g., feature extraction, object detection, classi-
fication, tracking, and change detection of different com-
plexity. This ensures that the full breadth of space use-
cases and different computational complexities are repre-
sented in benchmarks. Moreover, the benchmark is in-
tended to cover a diverse set of ML models including
various classical convolutional models with different net-
work architectures in terms of complexity and size. This
diversity ensures the coverage of various models with
different computational complexity and memory require-
ments. The benchmarking suite mainly relies on publicly
available large-scale standardized datasets to ensure the
reproducibility of results. Specifically, the datasets that
have been published in recent years, including BigEarth,
Airbus Ship Dataset, Cloudnet, and EuroSAT, are promis-
ing candidates. In addition, the benchmark approach cov-
ers various ML inference development and deployment
tools. Due to the fact that optimization plays an impor-
tant part in the final inference performance, tool choice

1Machine Learning Application Benchmark

max.ghiglione@airbus.com

Instrument
Calibration

Payload
Processing

Visual
Navigation

Autonomous
Operations Autonomous

Recovery

Anomaly
Detection

1

23

CNN, SVM
, Autocoder

RNN, GaN, MPL, tCNN

M
ixe

d

Figure 1: Machine Learning Application Examples

is crucial to meet the performance requirements with a
minimum amount of design effort. For this reason, we
will include inference tools, like FINN [5], Vitis AI [6],
hls4ml [7], VectorBlox [8], and more, featuring different
levels of HW design. Additionally, we cover the general
performance metrics associated with the payload appli-
cations that use ML inference, including accuracy rates,
throughput, model complexity, computational complex-
ity, resource utilization, and memory footprint. Finally,
we also address the space-specific objectives of on-board
computation that demand more careful consideration and
implementation, such as energy efficiency or tail-latency
bounds.

2. ML INFERENCE IN SPACE

Figure 1 shows a high-level view of artificial intelligence
(AI) in on-board processing applications, also called edge
AI. We identified three main categories of applications:
payload processing, anomaly detection and the wide field
of autonomous operations, including visual navigation
and autonomous decision making of spacecraft.
On one side, non-critical payload applications 2 have
a compelling business case promising the reduction of
downlink data through a wide range of on-board pro-
cessing tasks, starting from simple image classification
to compression use cases or multi-class segmentation of
sensor data. While many applications can benefit from
simpler ML techniques (like SVM2), a great interest is
currently in the inference and benchmarking of neural
networks, driven by the raise of standard models like
ResNet3 and transfer leaning.
On the other side, the improvement of anomaly detec-
tion 1 and prediction on spacecraft draws significant at-
tention. Such tasks lie in the field of applications crit-

2Support-Vector Machine
3Residual Networks

ical to the operation of satellites and will likely em-
ploy radiation-hardened CPU- or FPGA-based process-
ing. Based on literature, most applications rely on time-
series analysis using RNN4 or GAN5 to improve the train-
ing.
Autonomous operations 3 are another set of applica-
tions and are a field of interest due to the complexity
of upcoming constellations and costs of ground opera-
tors. Automating and increasing the speed of decision
making on satellites will relax requirements on other on-
board components and subsystems while possibly im-
proving operational capabilities. Moreover, AI will be
the enabler for completely new missions. For example,
when segmentation and detection of objects of interest
could be proven on space-viable hardware and be used
for autonomous operations, a satellite could perform fo-
cus sensing autonomously on targets to either improve
data quality or latency of the information to the end user.
Another example is the capability of real-time detection
of Oil spills, where alerts can be sent before the sensing
data is downlinked and reviewed by the ground opera-
tors. Such applications are certainly more complex than
standalone anomaly detection or cloud classification al-
gorithms and naturally more complicated than the bench-
mark. However, proving the maturity of the underlying
design techniques through benchmarking will be a step
towards fully AI-driven missions.

3. CHALLENGES OF MACHINE LEARNING IN
SPACE

The adoption of new technology on-board satellites is
still strongly limited by the requirements of reliability
and availability, which traditionally have imposed the
use of components with flight-heritage and extensive
qualification. This is why on-board processing on
space-borne data systems still relies on old components
that do not provide enough computational power to run
most of the innovative state-of-the-art algorithms [21].
The goal of MLAB activity is to narrow down a set of
performance metrics that can be used to compare the
different algorithms and processing platforms and help
with the selection of suitable COTS components for
rapid spin-in for space missions.
Limited on-board resources are one of the issues
common to all electronic equipment in space. Neural
networks are especially challenging in terms of memory
imprint due to the number of weights used in the model.
Even modern On-Board Computers (OBCs) have cache
memories that are too small to store all the weights of the
network, potentially causing bottlenecks in terms of data
transfers to off-chip memory which impacts a theoretical
calculation of the inference time. On an FPGA or ASIC,
memory access can be tailored in necessary with a ded-
icated memory. Moreover, contrary to neural networks
for image processing, anomaly detection networks could
potentially be stored internally on high-end FPGAs using

4Recurrent Neural Networks
5Generative Adversarial Networks

on chip memory with sufficient optimization, reducing
the area footprint in terms of board design.
Next to the limited resources, power efficiency plays a
key role in the design of neural networks for spacecraft
applications. Satellites have a limited power supply,
especially when speaking about the Smallsats that could
be early adopters of such AI systems. The power budget
for such solution would be limited to a few Watts, to
not impact the overall power budget of the satellite.
Moreover, Thermal dissipation poses also another chal-
lenge, rendering throughput/Watt a much more important
metric than total throughput.
In general, it is important to notice that the processing
requirements in terms of latency and throughput are of
second degree of importance, as long as they do not
impact other critical applications on the spacecraft. For
anomaly detection, the rates of telemetries are relatively
low, and the latency is of the detection is mainly limited
by the response of the OBC handling the fault than
the anomaly detection calculation itself. For payload
applications, the criticality of throughput depends on
the mission types. Continuous downstream missions
have critical throughput due to the bandwidth limitation,
a relatively slow data rate, which could be met by
the system requirements defined and the processing
platforms envisioned. The processing latency would
therefore be shadowed by the intrinsic limit of the
downstream. This type of application is considered as
the single stream or multi stream mode in the following
benchmark description. Eventual downstream missions
involve a limited set of downstream locations in specific
points of the orbit, meaning that post-processing of the
data will occur by fetching data from the long-term
storage memory before the transmission window and not
in real-time. This type of application is considered as
the offline or batch mode in the following benchmark
description.
Fault mitigation is another critical challenge for ML
applications in space. Due to the processing require-
ments and tool availability, the best inference options
are, in most cases, COTS devices and tools, which are
sensitive to SEU6 effects or, in the worst case, to failures
affecting the reliability over the mission time of the
equipment. Reliability issues of hardware platforms
like GPUs or possible latch-up effects on MPSoC7 are
certainly a concern in future missions but are difficult
to evaluate in the frame of the benchmark. Resistance
to non-destructive radiation effects can instead be taken
into account to compare different hardware platforms
or even algorithms. On one side, FPGAs offer multiple
options to reduce the effect of SEUs, while Fault-Aware
Training allows users to train their models to include a
certain resistance to bit upsets [14]. It is an open debate
how relevant SEUs are in ML applications as on one side
the algorithms are intrinsically quite resistant to bitflips
and on the other side do not ensure a 100% accuracy in
all cases, meaning that applications need to take into ac-
count false positives or negatives anyways. Nevertheless,
mitigation techniques have proven to increase accuracy

6Single-Event Upset
7MultiProcessor System on a Chip

by a significant amount and are therefore paramount for
many applications [13].
Another issue is the verification of AI driven applica-
tions. While commercial and agency missions have
already proven the use of tool aided autocoding, issues
relative to operating systems [19] and functional verifica-
tion of ML algorithms are still a problem to be answered.
These evaluations are out of scope of the benchmark,
but submitters8 will be able to highlight for example the
use of real time operating systems when comparing to
implementations based on Linux.

4. AI PROCESSING PLATFORMS IN SPACE

To select metrics that are on one side significant for the
industry and on the other side allow for a comparison of
a wide variety of submission platforms, an analysis of
target processing platforms is performed. In this analy-
sis, we enumerate the various families of processing plat-
forms and discuss their capabilities and the scope of tar-
get applications.

Figure 2: Target AI processing platforms for space, scat-
tered in a spectrum of various processing power vs. de-
gree of space qualification.

CPUs are one of the simpler options to implement ma-
chine learning algorithms. Due to the limitations in over-
all processing power and actual power efficiency of cur-
rent Space Qualified CPUs, these are relegated to time
series analysis applications, like anomaly detection. The
next generation of system on chips for OBCs will involve
multicore processors with much higher MFLOPS (e.g.,
DAHLIA or LEON4); therefore, larger neural networks
could also be employed on such processing platforms.
The inherent problem in such platforms is the computa-
tional efficiency when performing such complex calcu-
lations. Consequently, the power efficiency of embedded
neural networks, even in the best cases, is x10 times lower

8similar to the structure of MLPerf, submitters develop and make a
submission of the benchmark.

than a GPU or FPGA solution. Therefore, while imple-
menting time series analysis with a limited scope is not
a problem, the limitation of such a solution lies in the
future scaling of the ML Anomaly detection products to
include more and more telemetry evaluations.

FPGAs have been typically complex targets to imple-
ment Neural Networks due to the huge size of the de-
sign space and the high degree of manual optimization
required to fully implement the network in programmable
logic. Current developments in Design Tools from FPGA
vendors, coupled with the advent of SoCs that combine
the power of multicore-processing with FPGA-based
hardware accelerators on the same board, enables usesrs
to infer Convolutional Neural Networks on FPGAs suit-
able for space. Among the FPGA vendors, Xilinx offers
the most mature in terms of tools for ML inference, espe-
cially with FINN (HLS based) and Vitis (DPU9 IP based).
FPGAs allow users to design tailored low-power machine
learning applications that are compatible with equipment
for satellite platforms, with the current generation being
competitive even to Nvidia GPUs in terms of TOPS/W.
The KU06010 is already offered in an SEL11 immune
radiation-tolerant version, which could be envisioned as
a coprocessor, especially targetting payload processors.
Latch-up immune FPGAs from the Microchip portfolio
have started to offer options for neural network inference
with their Vectorblox12 tool on the Polarfire13, with the
option of a softcore RISC-V processor.

SoC, MPSoC, ACAPs normally include both an FPGA
and multiple fabric CPU cores, therefore allowing for in-
creased flexibility when designing an application. Com-
mercial or military SoC have shown acceptable single up-
set rates for non-critical applications, like payload pro-
cessing, and latch-up effects have been characterized pre-
cisely, allowing necessary design precautions to ensure
reliability using such integrated circuits. From the Xil-
inx portfolio the Zynq US+14 is a promising solution for
Smallsats, as well as being similar in terms of architecture
to the NG-Ultra15, and therefore representative of a future
ITAR16-free processing solutions. Moreover, the next
ACAP17 generation, with the Versal18, is expected to be
qualified for space in the future and would be compatible
in terms of tools, offering even higher performance. This
class of processing chips can be kept in the same class as
FPGAs in terms of implementation, considering that soft-
core processors can be introduced in programmable logic
with softcore processors as described previously. The ad-
ditional risk of SEFIs or other complex faults on the sys-
tem, as well as a difficult radiation characterization, is

9Deep Learning Processor Unit
10KU060 is a Xilinx Kintex product based on UltraScale architecture.
11Single-Event Latch-up
12https://www.microsemi.com/product-directory/dev-tools/5597-

vectorblox-ai
13Microchip PolarFire FPGAs
14A Xilinx system that features a UltraScale+MPSoC architecture
15FPGA-based MPSoC solution of NanoXplore
16International Traffic in Arms Regulations
17Xilinx Adaptive Compute Acceleration Platform
18Versal is Xilinx ACAP-based architecture

compensated by a higher clock rate of the cores.

GPUs and VPUs from terrestrial applications, driven by
CubeSat missions and the success of commercial Small-
sat missions where reliability requirements are not driv-
ing the design, have been used more and more for im-
age processing and AI. While sharing the framework with
commercial solutions is clearly an advantage for the de-
velopment time and complexity of an AI implementation
on such platforms, the questions on reliability and avail-
ability restrict the use cases of such processing platforms.
In fact, the use of terrestrial GPUs is highly questioned,
given the high failure rate shown in radiation testing [10].
Smaller GPUs or VPUs, coming from IoT or Embedded
commercial markets, like the Nvidia Jetson or Intel Myr-
iad, have shown some promising results for shorter mis-
sions [11].

Processing
Capability

Power Efficency

Tool maturityReliability

Fault Mitigation

CPU

FPGA

GPU/VPU

MPSoC

Figure 3: Quantitative comparison of processing various
platforms

To sum up, in Figure 3 we illustrate a qualitative com-
parison the advantages and disadvantages of each plat-
form. Finally, an extension of the benchmark to existing
radiation tolerant array processors, like HPDP19, or other
promising architectures, like Kalray multicores, will be
taken into account throughout the activity. It is to be
noted that these dedicated ASICs might be difficult to
benchmark using the use cases as the other platforms, and
might require separate special categories.

5. ON-BOARD PROCESSING BENCHMARK DE-
SIGN

In the previous sections, the main issues and needs of the
space industry to support AI applications have been de-
fined. Based on this, the benchmark should have a set of
algorithms to be used for comparing of various process-
ing platforms. The algorithms need to be representative
of the workloads of each use case but allow for different
categories in the design options space that are realistic
for such applications. The parameters of each benchmark
category need to be selected to match the necessary re-
quirements of each use case. Another additional com-

19High Performance Data Processor of ESA

Figure 4: Illustration of benchmark submission example
using Vitis AI framework.

plexity is that the benchmark needs to be able to demon-
strate both the hardware and software capabilities of each
platform. Moreover, given the variety of tools for infer-
ence, the benchmark needs to give an indication of how
to perform the porting to the target hardware. Closed
Submissions will clearly define which optimizations are
allowed to ensure a fair comparison between different
platforms. For example, quantization can be limited to
8-bit integers in a closed submission, ensuring that a re-
alistic value is used and that most hardware can comply
with this requirement. In the same way, submissions can
be limited to single-threaded implementations to avoid
variance and difference between processors and operat-
ing systems. Closed submissions will require a detailed
analysis of each inference tool, to ensure that compara-
ble results among various platforms are always achieved.
Another important point regarding closed submissions is
that they can give a realistic expectation on the design
effort required for the implementation. Open Submis-
sions will instead allow users to optimize their imple-
mentation freely, to showcase the possibly optimal per-
formance that can be achieved with each processing plat-
form. While such submissions could potentially make
submissions difficult to compare, they will be useful to
prove the feasibility of certain use cases.
Figure 4 shows an example of submission using a Xil-

inx board to clarify the benchmarking workflow. In this
case, the model is designed and trained in Tensorflow.
Then, the quantization is performed using Vitis AI frame-
work to create an inference model for a (in this example)
Versal ACAP. The benchmark shall then stimulated the
model using the validation dataset and evaluate the per-
formance. Note that goal of the study is to create a bench-
mark for ML platforms, focusing on the hardware aspect
and the so-called (hardware platform submissions). In
the first place, the benchmark enables comparison among
hardware options for ML, but users will be able to use
the open submissions on a certain platform also to evalu-
ate various algorithm models, which might be tailored to
a specific architecture of the processing unit. This means
that during the design possible (inference model submis-
sions) need to be taken into account.

5.1. Benchmark Categories

The first proposed specifications for the benchmark are
presented in (and not limited to) Table 1. The focus lies
on neural networks used in Earth Observation tasks, as
they are the most computationally intensive and share
similar processing requirements as visual-based naviga-
tion algorithms. Nevertheless, the benchmark could be
extended to include time series analysis or anomaly de-
tection in the future.

Use Case Model Dataset
Image Classification
(Heavy)

Resnet50
Multilabel

HyRank
≥384x384

Image Classification
(Light)

MobileNet-v1
Singlelabel

BigEarthNet
224x224

Object Detection
(Heavy)

UNet
ResNet50

Airbus Ship
≥384x384

Object Detection
(Light)

UNet
Tiny YOLOv3

Airbus Ship
224x224

Hyperspectral
(220 ≥ f ≥ 13) 3d UNet Indian Pine

fx144x144
Anomaly Detection
(Heavy) tCNN,Wavenet* multi-input

timeseries*
Anomaly Detection
(Light) GAN,RNN* single-input

timeseries*

Table 1: Preliminary specification of benchmark models,
datasets and associated use cases.
*Note that anomaly Detection is introduced as a future
extension of the benchmark and not discussed further.

In the current phase of the activity, we are considering
a wide range of datasets and models to evaluate to de-
fine the most promising subset for the benchmark. The
models selected need to not only be representative of
real use case scenarios but also be supported by the
widest range of inference tools. For this reason, the fo-
cus lies currently on the state-of-the-art for neural net-
works like ResNet, MobileNet, and YOLO. While there
are plenty of freely available images from the Copernicus
programme, the selection of dataset is challenging given
the limited amount of labeled ”machine-learning-ready”
images. The MLAB project has the goal of analyzing
datasets like labeled ships [3], coastlines [17], or large
classification datasets like BigEarthNet [1]. The dataset
should be openly available, ideally with an open-source
license that allows for easy access. Given the issues of
certain datasets (e.g., inaccurate labeling, data augmen-
tation), possible adaptations of the dataset are not ex-
cluded if necessary. In this case, the general approach
is to describe the necessary pre-processing steps within
the benchmark. Table 1 shows the image sizes selected
for the initial submissions. A ”light” model focused on
higher FPS and low accuracy, used to gather informa-
tion for satellite decision, but not necessary to process
actual downlink data, can be benchmarked on small im-
ages (224x224) as a standard for most applications. In
an application scenario, these images would either come
from a secondary sensor or be produced in a preprocess-
ing step, e.g., cutting and binning the data. This ensures

training with reasonable batch sizes and fewer issues in
terms of embedded memory on the inference platform. A
”heavy” model would benefit from greater image sizes
in the benchmark, in accordance to realistic scenarios
for imaging sensors in which less binning can be per-
formed. Currently, a tradeoff in terms of reasonable size
for this ”heavy” use case is undergoing, with the Air-
bus Ship Detection dataset supporting image sizes up to
768x678. Commercial datasets, like COCO [4], support
sizes of even 1200x1200 images for data center appli-
cations, which might be unrealistic on many embedded
processing platforms and have to be analyzed further.

5.2. Benchmark Metrics

We are considering a number of performance met-
rics to characterize various platforms and solutions.
These include various metrics such as accuracy, through-
put, power consumption, tailed-latency, resource utiliza-
tion, memory footprint, and fault-mitigation capabilities.
However, in the context of on-board data processing, the
accuracy, throughput, and power consumption are first-
class citizens and specify minimum requirements for the
submissions. Our benchmarks specify minimum accept-
able thresholds for these metrics, and Table 2 illustrates
a first proposal for such thresholds. For closed submis-
sions, given the fact that accuracy, throughput, and power
are correlated in a Pareto optimal design, the most rele-
vant quality metric for comparison needs to be selected
based based on each use case. The other metrics will
be fixed to a value that is relevant to the use case. The
alternative would be to fix all metrics in the closed sub-
mission and just see how much better each submission is
than the reference. The disadvantage is that submissions
might have difficult to compare results (e.g. optimized
for power vs optimized for throughput).

For classification use case, the accuracy metric can be
specified using Top-5, and for object detection, we rely
on IoU20 metric. Throughput is measured as the overall
frames per second (FPS), which also includes the post-
process time of the images as well as the actual inference
on the FPGA chip. These throughput thresholds spec-
ify the minimum requirements and in many cases, are
sufficient for the practical use case of Earth observation.
Moreover, we are proposing power corridors based on the
available power budged to the on-board inference engine.

In addition to the metrics discussed above, various met-
rics are considered as part of open submissions. For
example, more aggressive activation quantization and
model pruning can be considered as open submissions.
Moreover, multi-threading on the CPU of MPSoC sys-
tems is another metric that has a direct impact on the over-
all performance (e.g., on throughput) and could be con-
sidered as part of an open submission. Open submission
will allow to showcase the full potential of certain plat-
forms with design constraints and make a difficult com-
parison with other processing options.

20Intersection over Union

Use Case Accuracy Throughput Power
Image Class.
(Heavy)

Quality
Metric

5 FPS 10W

Image Class.
(Light) 90% 10 FPS Quality

Metric
Obj. Detection
(Heavy) 85% Quality

Metric
10W

Obj.Detection
(Light) 80% 10 FPS Quality

Metric

Table 2: Preliminary specification of performance re-
quirements for submissions. Further use cases submis-
sion options will be defined in the frame of the activity.

6. INFERENCE SUBMISSIONS

In this section, we introduce an implementation of the in-
ference benchmark, and our primary evaluations. In order
to illustrate our benchmark, we a compare an open and a
closed submission with respect to multi-threading.

6.1. Specification of the Target System and Imple-
mentation

We rely on automatic and high-level model deployment
workflow, i.e., Vitis AI as a fast path way to deploy-
ment. We target Xilinx ZCU10221 system, which is an
MPSoC system with a quad-core Arm Cortex-A53 pro-
cessor, and a 16nm FinFET+ FPGA fabric, which is a
reasonable testing platform for our benchmark. our infer-
ence scripts are implemented in Python and use the XIR22

and VART23 for the execution of inference. We use the
board image of version 2020.2, and in all the experiments
we use the Vitis AI library version 1.3.1.

6.2. Models and Dataset

For the experiments of this paper, we consider the de-
ployment of a segmentation model for ship detection as
an object detection use case. For this task, we used
a Unet-Resnet-based segmentation model that was de-
veloped in the context of Airbus Ship Detection con-
test24 which is based on the segmentation model pool
developed by Yakubovskiy [9] in Keras and Tensorflow
1. We adapt this model and refactor the scripts based
on the workflow introduced in Vitis Tutorials25. More-
over, we integrated the Unet implementation of Xilinx

21Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit
22Xilinx Intermediate Representation
23Vitis AI Runtime
24https://www.kaggle.com/c/

airbus-ship-detection, https://www.kaggle.com/
awater1223/unet-resnet34-for-ships

25https://github.com/Xilinx/Vitis-Tutorials/
blob/master/Machine_Learning/Design_Tutorials/
05-Keras_FCN8_UNET_segmentation/files/code/
config/unet.py

https://www.kaggle.com/c/airbus-ship-detection
https://www.kaggle.com/c/airbus-ship-detection
https://www.kaggle.com/awater1223/unet-resnet34-for-ships
https://www.kaggle.com/awater1223/unet-resnet34-for-ships
https://github.com/Xilinx/Vitis-Tutorials/blob/master/Machine_Learning/Design_Tutorials/05-Keras_FCN8_UNET_segmentation/files/code/config/unet.py
https://github.com/Xilinx/Vitis-Tutorials/blob/master/Machine_Learning/Design_Tutorials/05-Keras_FCN8_UNET_segmentation/files/code/config/unet.py
https://github.com/Xilinx/Vitis-Tutorials/blob/master/Machine_Learning/Design_Tutorials/05-Keras_FCN8_UNET_segmentation/files/code/config/unet.py
https://github.com/Xilinx/Vitis-Tutorials/blob/master/Machine_Learning/Design_Tutorials/05-Keras_FCN8_UNET_segmentation/files/code/config/unet.py

in Keras which consist of layers that are all supported
by Vitis AI for deployment on FPGA. With this imple-
mentation, we train and deploy segmentation models with
various deep-network backbones, e.g., Unet-ResNet50,
Unet-MobileNet-v2, and Unet-Inception-ResNet-V2, as
well, as various image sizes, e.g., 224x224, and 384x384,
quantization bits, e.g., 8 bits, and calibration configura-
tions.

For the evaluation of the deployed models, we con-
sider various model architectures and compare the over-
all throughput in Frames per Second (FPS). We consider
one a closed submission in which the SoC only supports
single threaded inference invocations and an open sub-
mission in which multi-threading is enabled.

6.3. Submission Preliminary Results

Table 3 presents a summary of preliminary results of our
experiment using our benchmark prototype for the object
detection use case, which will be tailored as benchmark
submissions and used as an example. In Table 3, we
observe an expected proportional throughput reduction
with the increase of image frame sizes which is consis-
tent among all network architectures and threading con-
figurations. We further observe an expected increase in
the throughput with the additional threads (referred to as
THD in Table 3). This observation highlights the differ-
ence between a close and open submission with respect
to threading: The open submission allows for achieving
higher throughput by exploiting the threading capability
of the CPU and operating system, while this can be for-
bidden in a closed submission. Consequently, the open
submission allows for further optimizations for better uti-
lization of the compute resources: This effect (increase in
the throughput with the additional threads) is expected as
using Vitis AI, the ZCU102 board is configured with 3
DPU units, and increasing the number of threads to re-
quest more inference queries simultaneously fills in the
latency gaps and results in higher dynamic utilization of
FPGA resources. The last observation is the compari-
son of various network architectures: while we are cover-
ing a wide range of network architectures (from the input
size and network architecture point of view), we still can-
not properly compare the networks. In other words, the
network complexity and size are not yet reflected in the
throughput. The reason for this is rooted in the currently
limited support of ‘padding‘ layers in Vitis AI. This re-
sults in partitioning of computation graph into smaller
subgraphs that are partly executed on the CPU and partly
on the FPGA. Consequently, our current prototype is not
an optimal implementation, and it suffers from the ex-
tra overhead of data flow between CPU and FPGA, and
execution of the padding layers on CPU. This overhead
is different for each individual network as each of them
has a specific graph partitioning that renders throughput
that are not in accord with the network size and complex-
ity. However, this problem would be resolved as Vitis AI
gets more mature. In that case, our benchmark would be
capable of characterizing the effects of network architec-

ture on the performance metrics. That being said, we also
need to note that the current throughput values lie in a rea-
sonable range for space applications. In the future, and
using the MLAB benchmark, we perform similar analy-
ses in combination with the other performance metrics,
e.g., energy consumption and inference accuracy, to pro-
vide realistic benchmark specifications.

6.4. Future Hardware Submissions

In the frame of this activity or parallel activities that could
support MLAB the following hardware submissions are
envisioned:

• ZCU102 for Object Detection, with Vitis AI, FINN
or Matlab AI toolbox

• Versal for Object Detection, with Vitis AI

• KU060 for Object Detection, with FINN

• Polarfire for Object Detection, with Vectorblox or
Matlab AI toolbox

• ZCU102 for Anomaly Detection, with different
frameworks

• Polarfire for Anomaly Detection, with different
frameworks

Other submissions in terms of tools or hardware could be
included as part of the benchmark demonstration.

7. CONCLUSIONS

This paper presented the state-of-the-art on-board ML
tools, frameworks, and hardware platforms that target
spacecrafts and satellites, demonstrating, on one side, the
importance of AI in future missions and on the other chal-
lenges involved. We explained the need for developing
benchmarks, with the goal of comparing hardware in the
first place and potentially create a baseline of datasets
and models to be used. The focus on neural networks for
Earth Observation is justified, and different hardware op-
tions are described, with MPSoC being a promising op-
tion for such use case. The primary specifications for the
machine learning application benchmark are described,
with a first structure proposed for such applications. Pre-
liminary results show the feasibility of implementing ML
applications (Ship Detection) for space, using simple and
automatic hardware design workflows (Vitis AI) to de-
ploy AI algorithms on hardware that meets the require-
ments of future missions.

ACKNOWLEDGEMENTS
The authors would like to acknowledge the support and
guidance provided by the ESA technical officer Gianluca
Furano under the scope of the MLAB contract.

Architecture Unet Unet-MobileNetv2 Unet-ResNet50 Unet-InceptionResNetv2
Size 160x160 224x224 160x160 224x224 160x160 224x224 160x160 224x224
Throughput - 1 THD. 21.40 11.48 20.89 12.00 19.64 10.53 19.49 14.56
Throughput - 8 THDs. 45.80 25.61 47.70 27.23 36.34 23.42 41.32 29.83

Table 3: Throughput (in FPS) of Semantic segmentation on Air Ship Detection dataset on ZCU102. The models are
trained with 100 Epoches, and then quantized with 8-bit weights and activations.

REFERENCES

[1] http://bigearth.net/

[2] https://spacenet.ai/datasets/

[3] https://sandbox.
intelligence-airbusds.com/web/

[4] https://cocodataset.org

[5] https://github.com/Xilinx/
finn-hlslib

[6] https://github.com/Xilinx/Vitis-AI

[7] https://github.com/
fastmachinelearning/hls4ml

[8] https://github.com/
Microchip-Vectorblox/VectorBlox-SDK

[9] https://github.com/qubvel/
segmentation_models

[10] Proton Testing of AMD e9173 GPU, NASA God-
dard Space Flight Center, Technical Rep. No. GSFC-
E-DAA-TN72682, 2019

[11] W. S. Slater, N. P. Tiwari, T. M. Lovelly
and J. K. Mee, ”Total Ionizing Dose Radia-
tion Testing of NVIDIA Jetson Nano GPUs,”
2020 IEEE High Performance Extreme Comput-
ing Conference (HPEC), 2020, pp. 1-3, doi:
10.1109/HPEC43674.2020.9286222.

[12] Wei X. et al., FPGA-Based Hybrid-Type Imple-
mentation of Quantized Neural Networks for Remote
Sensing Applications, 2019

[13] Zahid, Ussama et al., FAT: Training Neural Net-
works for Reliable Inference Under Hardware Faults.
2020 IEEE International Test Conference (ITC)
(2020): 1-10.

[14] G. Gambardella et al., ”Efficient Error-Tolerant
Quantized Neural Network Accelerators,” 2019 IEEE
International Symposium on Defect and Fault Toler-
ance in VLSI and Nanotechnology Systems (DFT),
2019, pp. 1-6, doi: 10.1109/DFT.2019.8875314.

[15] F. Libano et al., ”Selective Hardening for Neural
Networks in FPGAs,” in IEEE Transactions on Nu-
clear Science, vol. 66, no. 1, pp. 216-222, Jan. 2019,
doi: 10.1109/TNS.2018.2884460.

[16] J. Manning et al., Machine-learning space applica-
tions on Smallsat platforms with tensorflow, in Pro-
ceedings of the 32nd Annual AIAA/USU Conference
on Small Satellites, Logan, UT, USA, 2018, pp. 49

[17] Ting Yang, Shenlu Jiang, Zhonghua Hong, Yun
Zhang, Yanling Han, Ruyan Zhou, Jing Wang, Shuhu

Yang, Xiaohua Tong & Tae-yong Kuc (2020) Sea-
Land Segmentation Using Deep Learning Techniques
for Landsat-8 OLI Imagery, Marine Geodesy, 43:2,
105-133, DOI: 10.1080/01490419.2020.1713266

[18] V. J. Reddi et al., ”MLPerf Inference Benchmark,”
2020 ACM/IEEE 47th Annual International Sympo-
sium on Computer Architecture (ISCA), 2020, pp.
446-459, doi: 10.1109/ISCA45697.2020.00045.

[19] H. Leppinen, ”Current use of linux in spacecraft
flight software,” in IEEE Aerospace and Electronic
Systems Magazine, vol. 32, no. 10, pp. 4-13, October
2017, doi: 10.1109/MAES.2017.160182.

[20] M/ Esposito, ”In-orbit demonstration of artificial in-
telligence applied to hyperspectral and thermal sens-
ing from space”, in CubeSats and Smallsats for remote
sensing III vol. 11131

[21] Furano, Gianluca & Menicucci, Alessandra. (2018).
Roadmap for On-Board Processing and Data Handling
Systems in Space. 10.1007/978-3-319-54422-9 10.

http://bigearth.net/
https://spacenet.ai/datasets/
https://sandbox.intelligence-airbusds.com/web/
https://sandbox.intelligence-airbusds.com/web/
https://cocodataset.org
https://github.com/Xilinx/finn-hlslib
https://github.com/Xilinx/finn-hlslib
https://github.com/Xilinx/Vitis-AI
https://github.com/fastmachinelearning/hls4ml
https://github.com/fastmachinelearning/hls4ml
https://github.com/Microchip-Vectorblox/VectorBlox-SDK
https://github.com/Microchip-Vectorblox/VectorBlox-SDK
https://github.com/qubvel/segmentation_models
https://github.com/qubvel/segmentation_models

	Introduction
	ML Inference in Space
	Challenges of Machine Learning in Space
	AI Processing Platforms in Space
	On-board Processing Benchmark Design
	Benchmark Categories
	Benchmark Metrics

	Inference Submissions
	Specification of the Target System and Implementation
	Models and Dataset
	Submission Preliminary Results
	Future Hardware Submissions

	Conclusions

