
Trajectory Similarity using Compression
Gabriel Dax

Professorship for Big Geospatial Data Management
Department of Aerospace and Geodesy

Technical University of Munich
Munich, Germany
gabriel.dax@tum.de

Martin Werner
Professorship for Big Geospatial Data Management

Department of Aerospace and Geodesy
Technical University of Munich

Munich, Germany
martin.werner@tum.de

Abstract—In this paper, we present a novel approach for trajec-
tory similarity based on Kolmogorov complexity approximated by
a lossy compression of the original trajectory data using selected
features compressed into a concise memory representation by
means of a Bloom filter. Given the importance of trajectory data,
a linear-time distance measure with all theoretical guarantees
implied by a proper metric is very powerful if it is capturing
enough detail for important trajectory mining tasks. This stack
of feature extraction combined with feature embedding in a
Bloom filter constitutes a lossy compression for trajectory data
which can easily be extended with other discrete data like travel
mode. In addition, this compression has the needed properties
for efficient calculation of a normalized compression distance
(NCD) which approximates Kolmogorov complexity. We evaluate
this novel trajectory distance measurement using very simple
features and k-nearest-neighbor classification on selected real-
world datasets with remarkable classification accuracies. Fur-
thermore, we argue that the distance measure is very suited
to geospatial big data applications as each trajectory is first
transformed into few bits using the lossy compression stack.
At time of comparison, the original trajectory geometry is not
needed, instead, the sketches suffice. Despite very compressible
parameters (equal or less than 1024 bit per trajectory) and very
simple features, we already reach classification accuracies for
real-world trajectory classification tasks of more than 80% across
various datasets.

Index Terms—Compression Distance, Kolmogorov Complexity,
Bloom Filter, Similarity Measure, Trajectories

I. INTRODUCTION

Trajectory data comprises an important novel source of
geospatial information and is routinely used in many appli-
cations such as biology [1], map generation [2], or urban
analysis [3]. However, many trajectory distance functions
have nonlinear time complexity including the most important
distance measures of dynamic time warping (DTW) [4] is
Fréchet distance [5]. For some of them, localized versions
have been proposed that reduce the time complexity to linear
time essentially by ignoring relations between two trajectories
that are unlikely to affect similarity such as between tempo-
rally distant points. Still, the high quality distance measures
are time-consuming to apply and a lot of work has been
dedicated to trajectory simplification and dataset filtering for
limiting the amount of data that is fed into trajectory distance
computations. The ACM SIGSPATIAL GIS Cup 2017, for
example, was dedicated to one of these problems, namely
to perform a range search in a large database of trajectories

relative to Fréchet distance [6]. All winning submissions
employ powerful filtering mechanisms based on sketches of
the trajectories such as simplifications [7] or bounding box
representations [8], [9].

With this paper, we merge these two phases of the typical
filter-refine framework of traditional trajectory analysis using a
technique related to Kolmogorov complexity. The Kolmogorov
complexity is a theory in which the complexity of a string is
measured as the length of the shortest program producing this
string and is tightly linked to Shannon entropy. Unfortunately,
it is not computable [10]. However, it can be approximated
by compression. This is at least plausible when realizing that,
for a given random string, a program generating this string
must be longer than the string containing all the unpredictable
sequence in the source code. To the contrary, when a string is
compressible, the compression result together with a decom-
pression algorithm constitutes a comparably short program.

In this paper, we extract simple features related to orien-
tation and global location of trajectory points, encode them
into a Bloom filter, which we interpret as a compression of
the trajectory. Note that this is a lossy compression, hence, we
need to empirically evaluate that the information loss during
compression is related to mainly uninteresting aspects and
that the resulting compressed data blocks are sufficient to
successfully compare trajectories.

In the context of Kolmogorov complexity, one can introduce
the relative Kolmogorov complexity K(x, y) as the length of
the shortest program taking x as the input and producing
output y. With this additional notion, a distance measure is
extracted from the framework by carefully normalizing this
relative complexity.

As a consequence of the non-computability of the Kol-
mogorov complexity, this metric is not computable as well,
yet we can replace the Kolmogorov complexity with real-
world compressors and get a working approximation to the
distance. Note that we need to compute the joint compression
of two trajectory sketches in this setting and that this is
possible based on the sketches only as Bloom filters allow
for the computation of the union without accessing original
set information. That is, given two compressed trajectories,
because their joint compression is directly accessible via a
binary OR operation.

Finally, we evaluate the approach on several trajectory clas-

sification problems and conclude that this distance measure is
effective. The remainder of this paper is structured as follows:
In Section III we discuss the related work and introduce the
basic principles. In Section III we introduce the novel approach
of calculating the similarity between two trajectories by using
Bloom filter as compressors. Then, Section IV presents the
classification examples. Finally, Section V discusses the results
and the future work.

II. RELATED WORK AND BASIC PRINCIPLES

The Bloom filter is a well-known probabilistic data struc-
ture. The usages of these filters cover multiple scientific fields,
including classification using the machine learning algorithm
k-NN. The experiment performed in [11] showed that it is
possible to store trajectories in the data structure and classify
those trajectories only based on those filters. Based on this ex-
periment we use this approach to approximate the Kolmogorov
complexity to classify trajectories. To our knowledge, little
research has been done on the impact of Bloom filters in
combination of the Kolmogorov complexity.

A. Trajectory Representation as Strings of Discrete Orienta-
tions

The most common data representation of spatial trajectories
is a sequence of points, such as GPS coordinates and their
corresponding timestamps. While the coordinates construct the
trajectory by linear interpolation, the additional attributes can
have various relations to the data. However, an alternative
representation of trajectories is to store the angles between
two or more segments and their lengths. This method adds
a rotational invariance to the trajectories. Furthermore, the
angles and distances within the cartesian coordinate system
of one trajectory can be encoded into a sequence of letters.

A

B

C

D

E

F

Fig. 1. Visualisation of the shape feature global orientation.

For this representation, two choices of reference frames are
possible: a global one, like North or South and a local one,
which is relative to the previous segment of the trajectory, like
turn left or turn right. We discretize this representation in both
the angular and distance dimensions and assign a character to
each of the discrete values thereby generating a string [11]. For
long segments, it is feasible to subsegment those segments and
thereby produce repeated characters representing a discrete
notion of length. While Figure 1 depicts an example using
global orientation, Figure 2 represents an example using local
direction.

In order to calculate the orientation with a global direction
the angle between 0 and 2π is split into N equal parts and
each trajectory point constitutes an instance of the character
assigned to the split of the value range.

A C

D

E

F

B

Fig. 2. Visualisation of the shape feature local orientation.

B. Bloom Filter

Bloom filter is a probabilistic data structure, introduced in
[12], it represent sets of objects in a freely chosen size of
memory, which is done using hash functions. Furthermore,
the structure of a Bloom filter includes k pairwise independent
uniform hash functions, which are mapping all sets of objects
to a non-negative number smaller than the filter size m. The
empty set is represented by having the bit array F = 0.
The filter is able to perform two operations. For inserting an
element e, the k hash functions are invoked leading to a set
of numbers hi(e), i = 1 . . . k and the slots are set to one,
e.g.,F [hi(e)] = 1, i = 1 . . . k Reversely, to test if an element e
is considered to be in the filter, we test the same locations. An
important property of this construction is that the test function
does not provide false negative values. Essentially, this error
is probabilistically controlled by choosing parameters m and
k in relation to the number of elements to be held in the filter
n.

The fraction of zeros within a filter can be calculated by
using Equation 1.

foz =

(
1−

k

m

)n

≈ e−kn/m (1)

C. Normalized Compression Distance

The Kolmogorov complexity K(s) of a string s is defined
as the length of the shortest computer program that prints the
string s [13]. Additionally, the relative Kolmogorov complex-
ity K(x, y) is the length of the shortest program that gets
an input string x and outputs the string y. Obviously, the
Kolmogorov complexity of a string without a possibility of
a short algorithmic description is higher than the Kolmogorov
complexity of a string with a short representation [10].

The Normalized Information Distance (NID) is an approach
of a universal similarity metric to calculate the difference of
two objects, like strings, using the Kolmogorov complexity
K. Note that this construction leads to a metric, yet is not
computable as K is not calculable [10]. Within the formula,
the complexity of an object x is defined as K(x). Furthermore,
the complexity of the concatenated objects x and y is defined
with a logarithmic precession as K(x, y) = K(xy) = K(yx)
[14]. Equation 2 represents the NID of an object x and y.

NID(x, y) =
K(x, y)−min{K(x),K(y)}

max{K(x),K(y)}
(2)

The Normalized Compression Distance (NCD) is an approx-
imation of the NID in which the non-computable Kolmogorov

complexity K is replaced with a computable number, namely,
the size of a real-world compression function output C and is
defined in Equation 3.

NCD(x, y) =
C(x, y)−min{C(x), C(y)}

max{C(x), C(y)}
(3)

C represents a real word compressor (such as gzip or bz2)
and C(x) represents the length of the compressed object x.
C(x, y) represents the “joint” compression of objects x and
y, for example, by first concatenating x and y. A compressor
will find redundancies across x and y and therefore, this
measures relative complexity of x and y. Furthermore, NCD
is normalized to 0 6 NCD(x, y) 6 1 + ε with error ε
related to the discrepancy between real-world compressors and
information-theoretic bounds such as entropy [14].

III. COMPRESSION DISTANCE OF TRAJECTORIES

In this section, we apply the framework of NCD on tra-
jectories. However, it is not easily possible to find a measure
of trajectory complexity, where a relative complexity of one
trajectory with respect to another one, that is C(x, y) can
be defined as well. In this situation, we decided to adopt a
Bloom filter as a form of a lossy compression together with a
set of simple features to translate trajectories into sequences
of features. In summary, our framework first translates a
trajectory into a set of words (n-gram) which are then modeled
using a Bloom filter. The relative complexity is then given
in a canonical way as the complexity of the union of the
set of features of both trajectories and Bloom filters directly
support the needed computations without going back to the
uncompressed trajectory information.

A. Bloom Filter and Trajectory Features

The embedding of trajectory features, such as the global
orientation, into the Bloom filter is a central task within
the calculation of the novel trajectory similarity. However,
our approach uses two types of features, the geohashes and
the global orientations of a trajectory encoded into a set of
symbols (see Section II-A). Because of the fact that a trajectory
can point more than one time into the same direction, like East,
and can visit the same Geohash grid cell more than once,
it can lead to an information overlay in case of the global
orientations. So, it is necessary to consider the frequencies of
the symbols to be able to represent more than just a set of
all features that appeared. Hence, storing the set of features
ignoring their frequencies leads to a distance measure which
might not be able to capture enough geometric information
for the envisioned trajectory data mining tasks. To mitigate
the problem of an information overlay and an enumeration of
the features, an incrementing suffix is needed. For example,
a sample trajectory has been encoded to the sequence AGAH
of characters. After adding the frequency to each symbol the
new sequence of symbol {A1, G1, A2, H2} allowing a lossless
representation as a set.

An advantage of the Bloom filter is that the size of the
filter is independent of the number of added elements. This

suppresses the quadratic complexity of common trajectory
comparisons. This is because of the linear complexity of the
filters, related to the fixed length of the filter, which linearly
depends on the length of the trajectory for our selected local
features. Furthermore, this does not include the additional
overhead, such as storing features in the filter.

B. Compression using Bloom Filter

The normalized compression distance (NCD) approximates
the Kolmogorov complexity K(x) by using the length of
the output of a real-world compressor C(x), such as gzip.
Furthermore, the relative Kolmogorov complexity K(x, y) is
the size of a joint compression C(x, y) = C(x ∪ y), where
the , · ∪ · can be chosen as the concatenation of the inputs.
Furthermore, the joint complexity C(x, y) is computationally
expensive as it accesses the original uncompressed values x
and y. In a previous project, the authors showed that in case
of satellite images the computational burden is limiting the
applicability [15].

In this paper, we therefore replace the compressor of NCD
with an alternative complexity measure. This measure is
related to how far the Bloom filter is already filtered. Taking
advantage of the fact that the number of zeros in the filter
shrinks with the number of different elements inserted into
a Bloom filter. To exploit this observation, we compute the
Shannon entropy H(x) = −xlog2(x) − (1 − x)log2(1 − x)
of the bit field underlying the Bloom filter of enumerated
features as the information-theoretic complexity of a trajectory.
To summarize, we use B(x) := H(foz(BF(x))), where H
stands for the entropy and foz represents the fraction of zero
of the Bloom filter BF.

Similarly, we propose a notion of joint complexity approxi-
mating K(x, y) by using the union of the Bloom filters which
is directly computable as the binary OR of the bit fields.
Concretely, using BF(x ∪ y) = BF(x) ∨ BF(y) we define
B(x, y) = H(foz[BF(x)∨BF(y)]). This definition is plausible
since it resembles the complexity for identical trajectories
B(x, x) = B(x) and increases with the difference of x and y.

Furthermore, this approach reduces the computational com-
plexity and memory footprint as it is sufficient to keep only
the Bloom filters of individual trajectories during computation
instead of needing to actually compress pairs of trajectories
jointly to estimate C(x, y). Additionally, the approximation
of K using real- world compressors, such as gzip or bz2, can
be avoided.

C. NCD Using Bloom Filter

The previous discussion hides a subtlety of the construction
of the NCD using Bloom filters. The presented information
measure B(x) = H(foz(BF(x))) is monotonously increasing
only as long as the fraction of zeros remains smaller than 0.5.
Higher fraction of zeros lead to smaller numbers and, thus,
the distance could become negative.

There are three possible solutions to this situation: the first
solution would be to increase the number of bits. However, this
involves a recomputation of all trajectory sketches and might

not be practical or efficient as this binds the configuration to
the most complex example instead of to the average situation
leading to a waste of main memory. A second solution would
be to omit the entropy scaling and directly use the fraction of
zeros B(x) = foz(BF(x)). This approach is not covered within
this work because of using information-theoretic techniques on
a compressor with an intentionally wrong unit.

What can be observe is that negative values can only occur if
the union of the features extracted from the two trajectories is
significantly larger as opposed to the individual complexities.
Therefore, the third solution is to add an absolute value to
the numerator and give the following definition of the Bloom
Compression Distance:

NBD(x, y) =
|B(xy)−min{B(x), B(y)}|

max{B(x), B(y)}
(4)

By improving the NBD with the absolute value of the
numerator, the range becomes 0 6 NBD(x, y) 6 1 + ε,
where a value of zero represents that the compared objects are
similar and a value of one indicates a maximal dissimilarity.
The small number ε takes care of the fact that the entropy
of the fraction of zeros suffers from sampling problems for
small filters (only a few fractions of zeros can be attained
by a finite bit array) and distribution problems when using
real-world hash functions with non-uniform hash collision
patterns. Experiments affirm that this approach of repairing the
Normalized Bloom Distance is able to increase performance
as compared to using a more direct measure extracted from
the fraction of zeros directly. Furthermore, this not only
corrected a deficiency, but also has improved the results of
the experiments.

IV. EXPERIMENT

The calculation of a distance-based similarity metric is diffi-
cult for trajectories. Many aspects, as well as characteristics of
single segments have a big influence on the classification result
using a specific distance metric. The introduced approach
enables to approximate the incomputable Kolmogorov com-
plexity using trajectory feature extraction and representation
using Bloom filters. The procedure by which the experiments
were performed can be divided into several parts. When
reading in the dataset, the coordinates must be assembled
into trajectories. It is necessary to taken care that not two
or more are put together, because this can cause large jumps
between the points. Another step of the processing chain
of the experiment is to clean each trajectory, such as the
removing of sequences where the number of points is below
a minimum. The third step is to extract the selected features
from the trajectory, like the global directions in the form of
symbols. The last step before classification is to store the
extracted features into the trajectory specific Bloom filters.
From those filters a similarity matrix is calculated by using
the introduced metric. Additionally, a classification using the
K-Nearest Neighbors algorithm is done. To find the optimal
parameters for the number of global directions, the length and
the number of hash functions for the Bloom filter and the

parameters for a K-NN classifier, the brute force method is
used.

In order to evaluate the described approach and its descrip-
tive power, we present results on a range of both binary and
a multiclass trajectory classification tasks.

A. Results

Prague-Teams. The first experiment with the introduced
similarity metric NBD is conducted on the trajectory dataset
Prague-Teams [11]. This dataset has been sampled from a
computer game, called Urban Terror, where five players are
playing a map called Prague. From the paths of each player
spawning in the level the first 128 location points have
been extracted, which represents 6.4 seconds of playing time.
Furthermore, each trajectory within the game is assigned to
a team. The dataset contains a number of 273 individual
trajectories, where 40% is assigned to one team and 60% to
the other team. This dataset is represented in Figure 3(a).

1000 500 0 500 1000 1500
X

500

0

500

1000

1500

Y

(a) Representation of the Prague-
Teams dataset, where the coloring is
the teams membership.

0 50 100 150 200 250
row

0

50

100

150

200

250

co
lu

m
n

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

(b) Visualisation of the similar-
ity matrix calculated from the
Prague-Teams dataset.

Fig. 3. The Prague-Teams dataset.

As we don’t want to exploit the obvious spatial separation
of both teams, we apply global orientation with 16 directions.
Furthermore, we build filters of 256 bits using two hash
functions leading to an average fraction of zeros of 47.51%.
The resulting set of Bloom filters occupies about 8kB of
main memory (this amounts to a representation of the whole
trajectory dataset with only two bits per trajectory point).

Evaluating k-NN, where the number of neighbors has been
set to 19, leads to an overall success rate of 91.59% for
assigning a trajectory the right team. This is near to the
results reported for a matrix factorization approach employing
n-gram structures in [11]. It is interesting to see that the
results reported there for a n-gram-free version, yet with only
eight directions, is reported as 81.03%. In addition, within
the similarity matrix depicted in Figure 3(b), one can clearly
see two darker regions representing the two teams and a
noise pattern related to the randomized nature of the whole
approach. In summary, the classification with the k-NN shows
that the noise is not harmful.

Prague Ego-Shooter. The second experiment has been
created using the same game than before. In this situation,
the trajectories are self-redundant due to the nature of the
game including lots of loops and the joint objective for both
teams to “capture and hold” a certain flag location on the

map. The dataset contains several 275 individual trajectories,
with 244, 675 samples of locations. Figure 4(a), represents the
Prague Ego-Shooter dataset, where the coloring represents the
team membership of each individual trajectory.

1500 1000 500 0 500 1000 1500
X

500

0

500

1000

1500

Y

(a) Representation of the Prague Ego-
Shooter dataset, where the coloring is
the teams membership.

0 50 100 150 200
row

0

50

100

150

200

co
lu

m
n

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(b) Visualisation of the similar-
ity matrix calculated from the
Prague Ego-Shooter dataset.

Fig. 4. The Prague Ego-Shooter dataset.

As in the previous dataset the number of global orientations
has been set to 16. Furthermore, we have built Bloom filters
of 1024 bits using three hash functions leading to an average
fraction of zeros of 73.89%. The evaluation using a k-NN,
where the number of neighbors has been set to 13, leads to
an overall success rate of 90.52% for assigning a trajectory
the right team. In addition, the calculated distance matrix is
visualized in Figure 4(b). The Figure shows the same pattern
of the two teams, but now with a very small difference and
not very convincing at first sight. This is not surprising as
beyond the structure near the spawn points, the game mode
of capture and hold leads to similar trajectories in both teams.
This makes it a very hard classification problem as only the
fact that spawn points remain slightly safer zones for players
and that teams might regroup near the spawn points induces
structures. In summary, the result shows that the approach
of the introduced similarity metric NBD is able to predict
accurately even complex two class classification problem.

Characters. The third experiment using the introduced
similarity metric NBD, is performed on the trajectory dataset
Character Trajectories. This dataset has been provided by the
UCI Machine Learning Repository and contains 2858 Trajec-
tories characters, written by hand with a pen. Furthermore,
20 classes are included, with characters which are possible
to write with a single pen stroke. The dataset has three
dimensions, where the first two represent the coordinates and
the last is the pen tip force [16]. Because of the fact that
the dataset has been numerically differentiated and Gaussian
smoothed, the preprocessing includes additional steps in order
to get the shape of the letters. The distribution of trajectories in
the dataset is unbalanced, where each class contains between
125 and 175 trajectories. Figure 5(a) illustrates the Character
Trajectories dataset.

We apply the presented framework by first integrating the
given trajectory data into shapes as depicted in Figure 5(a),
encoding each trajectory using only global orientation with
eight directions, and putting the resulting features into a Bloom
filter of 256 bits and two hash functions. This result to an

10

0

10
0

10

20

0

25
0

0 20
20

0

0 25 25 0 0 25
X - Distance [mm]

Y
- D

ist
an

ce
 [m

m
]

(a) Representation of the Characters
dataset, where the coloring is the
teams membership.

0 500 1000 1500 2000 2500
row

0

500

1000

1500

2000

2500

co
lu

m
n

0.00

0.05

0.10

0.15

0.20

0.25

(b) Visualisation of the similar-
ity matrix calculated from the
Characters dataset.

Fig. 5. The Characters dataset.

average FOZ of 74.40%. In this context, our approach reaches
an overall success rate of 81.52% using NBD and k-NN
classification, where the number of neighbors has been set
to 15. With the same parameters and features (e.g., number
of directions), a matrix factorization approach reached an
accuracy of only 74.2% [11].

From the Bloom filter representation, we compute the
similarity matrix depicted in Figure 5(b) using the similarity
metric NBD with axes ordered by classes. One can clearly see
the darker regions representing the classes of letters as well as
a noise pattern related to the randomized nature of the whole
approach. In addition, the patterns are in a few regions not
very convincing at first sight. This is not surprising as beyond
the structure of certain letters, such as the difference between
the letters U and V is handwritten smaller than in case of other
letters and leads to similar trajectories in different classes.

In summary, the results show that the approach of NBD
provides accurate results not just in two class classification
problems, but that the approach is also able to classify a
complex multiclass classification problem accurately.

Geolife. The last experiment with the use of the similarity
metric NBD, is with the trajectory dataset Geolife, which
has been provided from [3]. The dataset contain trajectories
collected from 182 users using GPS in the timespan between
April 2007 and August 2012. Furthermore, the full dataset in-
cludes 17, 621 labeled trajectories with more than 24.8 million
points. The classes represent different types of mobility, such
as Bike and Taxi. This experiment uses a subset of the dataset,
which includes the classes Bus and Taxi in the area of Beijing.
This subset contains a number of 500 individual trajectories,
equally distributed over the two classes. Figure 6(a), represents
the balanced Geolife dataset, where the coloring represents the
class membership of each individual trajectory.

For the feature extraction, we use global orientation with
16 different directions as well as a geohash of 7 characters.
The geohash is not interpolated, but pulled for each sample
in the trajectory such that a weak notion of speed or stays is
represented as well. Using 1024 bits for the Bloom filters, this
results in filters with an average fraction of zeros of 93.11%.
With a ten-fold cross validation and a k-NN classifier, where
k = 4, we gain a success rate of 82.00%. From the Bloom
filter representation of this dataset, we computed a distance

116.2 116.3 116.4 116.5 116.6
Latitude

39.80

39.85

39.90

39.95

40.00

40.05

40.10

Lo
ng

itu
de

(a) Representation of the Geolife
dataset, where the coloring shows the
type of mobility.

0 100 200 300 400
row

0

100

200

300

400

co
lu

m
n

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

(b) Visualisation of the similar-
ity matrix calculated from the
Geolife dataset.

Fig. 6. The Geolife dataset.

matrix depicted in Figure 6(b) using the similarity metric NBD
with axes ordered by classes. One can clearly see two darker
regions representing the two classes and a noise pattern related
to the randomized nature of the whole approach.

V. CONCLUSION

In this paper, we introduced a similarity metric inspired by
the Kolmogorov complexity as well as by the idea of approx-
imating Kolmogorov complexity with compression. In order
to apply this framework to trajectories, we first select feature
sequences and encode features with multiplicities in a Bloom
filter to obtain a compressed representation of trajectories.

By deriving an information measure from a Bloom filter
instance in main memory, we are able to provide a novel dis-
tance function similar to normalized compression distance in
which Kolmogorov complexity is approximated by the size of
compressions of data. One central advantage of this approach
is that we are able to compute the joint information complexity
C(x, y) without compressing x and y together thereby actually
not needing the original data during comparison not even for
newly incoming trajectories. Instead, we exploit properties
of the Bloom filter to estimate the information of the joint
compression from the compressed data directly. This leads to
a very memory-efficient representation with only few bits per
point or even less than one bit per trajectory point.

Given this compressible nature, it is surprising, how pow-
erful even simple features like orientation and global location
can be in classifying real-world trajectory data. In addition,
many trajectory distances have quadratic complexity including
DTW and Fréchet distance and are, therefore, difficult to
apply in a big data setting. With compression distance, we
can provide an alternative based on randomized algorithms in
which we might loose a few guarantees due to the random
nature of the underlying data structures yet come up with
good results from heavily compressed representations. This
opens up trajectory computing to application on mobile and
resource-constrained devices or in extremely large collections
otherwise impractical today.

For future work, we envision to apply the framework of ran-
domized algorithms combined with algorithmic information
theory to a wider range of spatial objects beyond trajectories.
In addition, there are many more features possible to represent

trajectories which should be discussed in more detail. There is
a continuum of methods ranging from lossless representations
to heavy information loss and we need to find a better
understanding of which information is relevant to a given
spatial computing task and which information can safely be
removed.

REFERENCES

[1] A. Karbalayghareh, U. Braga-Neto, and E. R. Dougherty, “Classification
of single-cell gene expression trajectories from incomplete and noisy
data,” IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, vol. 16, no. 1, pp. 193–207, 2019.

[2] T. Alsahfi, M. Almotairi, R. Elmasri, and B. Alshemaimri, “Road
map generation and feature extraction from gps trajectories data,” in
Proceedings of the 12th ACM SIGSPATIAL International Workshop on
Computational Transportation Science, ser. IWCTS’19. New York,
NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3357000.3366140

[3] Y. Zheng, X. Xie, and W.-Y. Ma, “Geolife: A collaborative social
networking service among user, location and trajectory,” IEEE
Data(base) Engineering Bulletin, June 2010. [Online]. Available:
https://www.microsoft.com/en-us/research/publication/geolife-a-
collaborative-social-networking-service-among-user-location-and-
trajectory/

[4] S. Salvador and P. Chan, “Toward accurate dynamic time warping in
linear time and space,” Intell. Data Anal., vol. 11, no. 5, pp. 561–580,
Oct. 2007.

[5] T. Devogele, L. Etienne, M. Esnault, and F. Lardy, “Optimized
discrete fréchet distance between trajectories,” in Proceedings of the
6th ACM SIGSPATIAL Workshop on Analytics for Big Geospatial
Data, ser. BigSpatial’17. New York, NY, USA: Association
for Computing Machinery, 2017, pp. 11–19. [Online]. Available:
https://doi.org/10.1145/3150919.3150924

[6] M. Werner and D. Oliver, “ACM SIGSPATIAL GIS Cup 2017 - Range
Queries Under Fréchet Distance,” ACM SIGSPATIAL Newsletter, To
Appear., 2018.

[7] K. Buchin, Y. Diez, T. van Diggelen, and W. Meulemans, “Efficient
trajectory queries under the fréchet distance (gis cup),” in Proceedings
of the 25th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, 2017, pp. 1–4.

[8] J. Baldus and K. Bringmann, “A fast implementation of near neighbors
queries for fréchet distance (gis cup),” in Proceedings of the 25th
ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, 2017, pp. 1–4.

[9] F. Dütsch and J. Vahrenhold, “A filter-and-refinement-algorithm for
range queries based on the fréchet distance (gis cup),” in Proceedings
of the 25th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, 2017, pp. 1–4.

[10] P. M. B. Vitányi, F. J. Balbach, R. L. Cilibrasi, and M. Li, “Normalized
information distance,” in Information Theory and Statistical Learning,
F. Emmert-Streib and M. Dehmer, Eds. Boston, MA: Springer US,
2009, pp. 45–82.

[11] M. Werner and M. Kiermeier, “A Low-Dimensional Feature Vector
Representation for Alignment-Free Spatial Trajectory Analysis,” in
Proceedings of the 5th ACM SIGSPATIAL International Workshop on
Mobile Geographic Information Systems (MobiGIS’16), 2016.

[12] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.
[Online]. Available: https://doi.org/10.1145/362686.362692

[13] T. M. and J. A. Thomas, Elements of Information Theory (Wiley
Series in Telecommunications and Signal Processing). USA: Wiley-
Interscience, 2006.

[14] R. L. Cilibrasi and P. M. B. Vitányi, “Clustering by compression,” IEEE
Transactions on Information Theory, vol. 51, no. 4, pp. 1523–1545, Apr.
2005.

[15] C. O. Dumitru, G. Dax, G. Schwarz, C. Cazacu, M. C. Adamescu, and
M. Datcu, “Accurate monitoring of the danube delta dynamics using
copernicus data,” in SPIE Remote Sensing, 2019, pp. 1–13. [Online].
Available: https://elib.dlr.de/129121/

[16] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

