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ABSTRACT

Recent generations of GPUs have seen the introduction of hardware-

accelerated ray tracing algorithms that are suitable for real-time

use. They provide hardware for massively parallel ray-geometry in-

tersection computations, indicating a highly optimized spatial data

structure derived from arbitrary triangle-based geometries. Spatial

join is an ubiquitous problem in spatial databases, GIS applications,

spatial statistics, and similar applications. On a fundamental level,

spatial joins are based on point in polygon tests (PIP). We suggest

exploiting the capabilities of ray tracing hardware to perform fast

parallel point in polygon tests in order to implement hardware-

accelerated spatial joins.
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1 INTRODUCTION

Spatial data has many applications in science and industry. One

important and ubiquitous operation on spatial data is spatial join

[1] an operation to combine two or more spatial datasets using a

spatial predicate. One fundamental part of spatial join is a point in

polygon join algorithm, although spatial join is much more. The

classical algorithm for point in polygon tests is known as Jordan test

[3], which works by intersecting rays with polygon edges. While

there are existing techniques using GPUs to accelerate spatial join,

we propose and investigate the exploitation of current generation

GPUs with hardware enabled ray tracing to achieve highly per-

formant point in polygon tests on large numbers of points and

polygons in parallel. We introduce a novel technique that promises

great performance, show the limitations and solutions, as well as
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promising experimental results and end with a conclusion where

we propose some vendor side improvements that can be useful for

this and other scientific applications.

2 MAPPING PIP TO 3D RAY TRACING

OPERATIONS

In order to solve the point in polygon problem on a GPU optimized

for 3D rendering, the data needs to be transformed in an appropriate

way and the problem needs to be formulated in a way, so that it

can be executed on this hardware in the most efficient way.
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Figure 1: Simplified ray tracing architecture.[2]

GPU programs are small independent functions that execute at

different steps in the ray tracing pipeline, see figure 1.

To do point in polygon tests, a ray is generated for each point in

parallel to the ground-plane and polygons are transformed into 3D

representation by extrusion along the 3rd spacial dimension, thus

creating walls see figure 2(a). The ray tracer will call the closest hit

program for rays intersecting a wall or themiss program for any ray

that is not intersecting with geometry. The closest hit program can

decide between front-facing and back-facing intersection, which is

used to detect whether the point is inside the polygon or not.

To minimize non-local data access, the polygon id is encoded as

the wall-height (see figure 2(b)) and reconstructed by the closest

hit program using the barycentric coordinates of the intersection

point, see figure 2(c). While this limits the amount of polygons

in the experiments to 216, before floating point precision leads to

inaccuracies, the alternative of using a triangle index, not only is

slower due to memory access patterns, but also comes with a higher

memory footprint.

3 IMPLEMENTATION CHALLENGES

The implementation posed several challenges, some of which will

be discussed here. Additionally we ran into problems implementing

data streaming which led to hard to track down data alignment

issues, using available driver versions.
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(a) Extruded polygon on the ground plane. (b) Polygons with two different extrusion
heights.
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(c) Wall height encoding of polygon ids

Figure 2: 3D geometry generation from 2D polygons.

3.1 Z-Fighting

Traditional rasterization-based pipelines have a well known prob-

lem called z-fighting, which happens when the the distance between

triangles is smaller than the precision of the z-buffer, that is used to

enforce drawing depth on a per pixel basis. A similar effect can be

observed in the ray tracing pipeline, which is a problem for poly-

gons that share borders. The following is a collection of possible

solutions, some of which have been implemented successfully

3.1.1 Stochastic Multi Rays. For each point several rays are

launched in random directions or an evenly distributed star pattern.

If any of the rays suggests that the point is inside a polygon it can

be taken as truth, only if it classified as outside a certain percentage

is wrong. This percentage is dependant on the number of rays used.

Outside points can either be discarded or retested using traditional

methods. For spatial statistics it could be regarded as noise.

3.1.2 Negative Buffer. A practical solution for many scenarios is

to add a preprocessing step which introduces a negative buffer

operation on the polygon data. This will shrink all polygons by a

predefined amount that should be slightly higher than the precision

error of the the ray intersection algorithm. This approach works

well, though it bears the problem of points falling into the buffer,

which can be handled as in 3.1.1.

3.1.3 Ray Continuation. Ray continuation is the idea of continuing

a ray, once it intersects with a wall that suggests we are outside a

polygon. This new ray should then either intersect with the wall of

the polygon we are inside, which will be very close, which means

we can safely assume that we are inside the given polygon, or it

intersects with the opposite side wall of the polygon that was hit

from the outside, which suggests the starting point is outside a

polygon. This again is a technique that is prone to error due to

inaccuracies in the ray tracer. As ray continuation is slow, an all hit

program or many hit program for the n closest hits would enable

this idea to great effect.

3.2 Nested Polygons

To account for nested polygons the continuation callable can be

exploited, continuing the ray until the miss program is called, count-

ing the intersections along the way. A vendor side addition of an

all hit program in addition to the any hit program could improve

this step as well. Currently the maximal nesting depth needs to be

predefined as ray payloads have a fixed size, and ray continuation

is generally slow.

4 EXPERIMENTS

Experiments suggest that scaling is linear for polygon geometries

and points. Due to problems streaming larger datasets, experiments

are incomplete as of yet and have only been performed using syn-

thetic data consisting of random voronoi cells and randomly gener-

ated points.

5 CONCLUSION

We show that ray tracing enabled GPUs can be exploited to per-

form parallel point in polygon tests on large numbers of points

and polygons. While single batches worked great, a streaming im-

plementation came across problems that might need resolution on

vendor side. We also propose the additional feature of an all hit

program or many hit program to efficiently solve nested polygons

and problems caused by inaccuracies in the ray tracer.
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Figure 3: Performance matrix per point per polygon edge

of point in polygon tests. Comparing to QGIS on the same

machine, reveals magnitudes of performance difference.
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