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ABSTRACT:

Feature extraction from a range of scales is crucial for successful classification of objects of different size in 3D point clouds with
varying point density. 3D point clouds have high relevance in application areas such as terrain modelling, building modelling or
autonomous driving. A large amount of such data is available but also that these data is subject to investigation in the context of
different tasks like segmentation, classification, simultaneous localisation and mapping and others. In this paper, we introduce a
novel multiscale approach to recover neighbourhood in unstructured 3D point clouds. Unlike the typical strategy of defining one
single scale for the whole dataset or use a single optimised scale for every point, we consider an interval of scales. In this initial
work our primary goal is to evaluate the information gain through the usage of the multiscale neighbourhood definition for the
calculation of shape features, which are used for point classification. Therefore, we show and discuss empirical results from the
application of classical classification models to multiscale features. The unstructured nature of 3D point cloud makes it necessary to
recover neighbourhood information before meaningful features can be extracted. This paper proposes the extraction of geometrical
features from a range of neighbourhood with different scales, i.e. neighborhood ranges. We investigate the utilisation of the large
set of features in combination with feature aggregation/selection algorithms and classical machine learning techniques. We show
that the all-scale-approach outperform single scale approaches as well as the approach with an optimised per point selected scale.

1. INTRODUCTION

3D point clouds have a high relevance in various application
areas, which also leads to a large amount of available data sets,
but also to many investigation in the context of different tasks
like segmentation, classification, simultaneous localization and
mapping and others.

In this paper, we introduce a novel multiscale approach to re-
cover neighbourhood in unstructured 3D point clouds. Neigh-
borhood information is needed in order to provide spatial con-
text to individual points. The size of the neighborhood can be
related to a scale, where the 3D pointcloud is investigated. Such
approaches are well known in image processing, where image
pyramids are used to extend the pull-in range for different kinds
of analysis operations. Unlike the typical strategy of defining
one single scale for the whole dataset or use a single optim-
ised scale for every point, we consider a whole range of scales.
We use two types of neighbourhood definitions k nearest neigh-
bours kNN and ball shaped. The scale is considered to be k the
number of neighbours in the first case and r the radius of the
ball in second case. In this initial work we evaluate the inform-
ation gain through the usage of the multiscale neighbourhood
definition for the calculation of shape features, which are used
for classification. Therefore, we show and discuss empirical
results from the application of classical classification models to
multiscale features.

A 3D point cloud is an unordered set of points, consisting of 3
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parameters from three independent dimensions z, y and z. Ad-
ditional data is often available per point, like reflectivity or RGB
colours from optical cameras. However, in this work we focus
on shape features calculated from neighbourhood geometry of
points. Such features are robust and lead to good performance
in semantic labelling tasks (Hackel et al., 2016).

In general, semantic labelling is the assignment of semantic
classes to elements e.g. points. Semantic segmentation in our
case is a process of assigning a semantic label, a generalised
meaning like car or facade, to each point in the point cloud. The
points gain their meaning from their neighbourhood. The effect
of this is that we need to recover the neighbourhood from the
unstructured point cloud and the definition and the parameter of
the neighbourhood are crucial for the performance of the sub-
sequent labelling. The scale of the neighbourhood is subject of
this investigation since this parameter depends on different as-
pects. When this parameter is selected too small it can prevent
to capture enough shape information. However, if it is chosen
too large the information could be blurred as several classes
are mixed up in one neighbourhood. Also, varying density of
the point cloud must be considered, what makes constant scale
definition for the whole dataset or even over several datasets
inappropriate.

To overcome previously described problems of scale parameter
selection we propose to use a large range of scales in parallel
and to recover neighbourhoods of different scale for a single
point. This strategy leads to a high number of features, which
is reduced utilising Correlation-based Feature Selection (CFS)



or principal component analysis (PCA).

The expectation is that the usage of the all-scale approach im-
proves the classification performance, due to its ability to integ-
rate dynamically scaled context information. This improvement
comes on the cost of higher computational effort, which can be
reduced by GPU computation or dynamic estimation of scales
in the feature extraction part of a deep learning framework.

Existing multiscale approaches vary in extraction and classific-
ation methods like deep learning (Qi et al., 2017) (Guo, Feng,
2018) or classical models (Weinmann et al., 2013). All these
approaches experience drawback from the so-called Hughes phe-
nomenon (Hughes, 1968), namely the decreasing classification
accuracy for growing feature space dimensionality. The ap-
proach of optimizing the scale per instance, in this case per clas-
sified point, does not have this problem but it tends to converge
towards small scales and ignores the nearby context informa-
tion.

In this work, we propose a strategy to use a large number of
scales and overcome the Hughes phenomenon by means of fea-
ture selection or aggregation. The main goal of this evaluation
is not the maximization of the classification performance, but
the analysis of the all-scale contribution to the classification
performance. Therefore we use a minimalist framework with
few geometrical features and simple classifiers.

The remainder of this paper is structured as follows. In the next
Section 2 we will report the related work, in the Section 3 we
describe the full point cloud classification pipeline that we pro-
posed in this research, in Section 4 we present the experimental
results, and making some conclusions of the study in Section 5.

2. RELATED WORK

The structure recovery from point clouds is based on neigh-
bourhood definitions using a certain scale parameter. There are
three common strategies to handle the scale parameter (i) global
single scale, (ii) global multiscale, (iii) one local scale per point.

(i) This default strategy defines a single scale for the whole
dataset and depends on prior knowledge about the dataset. It
can be used with cylindrical (Filin, Pfeifer, 2005), spheric (Lee,
Schenk, 2002) (Linsen, Prautzsch, 2001) and kNN neighbour-
hoods. The scale is subject of meta-parameter optimisation and
have to be redetermined for each data set with differing prop-
erties. The static size of the scale makes it impossible to cover
relevant contexts for classes of different sizes, like for example
cars and buildings. This strategy has a limited generalisation
behaviour as the parameters have to be adapted to a certain data-
set.

(ii) Combination of several different global scales from (i) provides

implicitly information about changes between scales and al-
lows the framework to consider different scales (Niemeyer et
al., 2014) (Schmidt et al., 2014).

(iii) The scale of the neighbourhood selected for each point de-
pends on the properties of the neighbourhood. The scale can
be selected based on eigenentropy (de Blomley et al., 2016)
(Blomley et al., 2016). This strategy allows to generalise from
a specific data set, but still suffers from the disability to cap-
ture context from different scales, like for example a car has
tires (scale less than 1m) and appears almost always on the road
(scale of several meters).

There are hybrid approaches e.g. (Landrieu, Boussaha, 2019),
(Landrieu, Simonovsky, 2018), which combine constant neigh-
bourhood scale and optimised size of super-neighbourhoods called
superpoints. Constant scale KNN neighbourhoods are used to
extract features for the unsupervised segmentation into super
points. The number of points withing the superpoints is de-
pendent on the number of neighbouring points showing similar
feature values.

For (ii) and (iii) we have to calculate properties for different
scales, either to select an optimal one or to use multiple of
them. This causes computational costs. The all-scale approach
leads to even higher computational costs; nevertheless, it can
be covered with modern hardware. This allows us to investig-
ate the performance gain through the all-scale approach. The
runtime optimization will be done in the future.

3. METHODOLOGY

A point cloud is an unordered and unstructured set of points.
Each point p € R? consists of 3 parameters and refers to a
position in metric space. We search for a mapping which as-
signs each point in the point cloud to a semantic class. Utilizing
given labels to a certain set of points we train a machine learn-
ing model to map the points to the semantic classes. This basic
process consists of the following steps 1:

1. Recover context of a certain point by recovering its neigh-
bourhood with a single scale.

2. Extract predefined features from the neighbourhood.
3. Classity or train a classifier based on the features.
We adopt this process by expending part 1 to recover a set of

neighbourhoods within a range of scales. We introduce after
step 2 the feature selection and feature reduction as step 2a.
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Figure 1. Process overview



3.1 Defining the Neighbourhood

In this paper, we consider two classical ways of defining the
neighbourhood of a point in a point cloud for feature extrac-
tion: first, a spheroid with a chosen radius, and second, neigh-
bourhoods consisting of the k nearest neighbours in space. A
neighbourhood P is a subset of the point cloud and two dif-
ferent neighbourhoods can share (all) points depending on the
topology of the point cloud. The neighbourhood of p; € R is
referenced as P;.

3.2 The Structure Tensor and Eigenvalue-Derived Features

As we are interested in describing the local geometry of the
neighbourhood of a point, the first step is to remove absolute
location information, by subtructing the centroid from the neigh-
bourhood. Otherwise the calculated eigenvalues would describe
the position of the neighbourhood. Then, we estimate the point
covariance matrix by organising a neighbourhood P; inan x 3
matrix A with n € N number of points in P;. Finally, we
calculate Ao, A1 and A2 from the eigenvalue decomposition of
AT A. This 3 x 3 matrix is called structure tensors for 3D point
clouds. The extracted three eigenvalues Ao, A1, and A2 are sor-
ted and normalised to fulfil Ay >= A1 >= A2 >= 0 and
Mo + A1 + A2 = 1 and derive the features listed below (Wein-
mann et al., 2013).

Eigenvalues:
Aoy A1, A2

The values of the eigenvalues correlate with the shape of the
neighboorhood, therefore we use them as three standalone fea-
tures. Ao has a value in the range [1/3,1]. A is defined to be
smaller than A1 and has the value in the range [0, 0.5]. Follow-
ing the definition is A2 value in the range [0,1/3].
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This feature has the valuation within the range [0, 1] where one
indicates maximal linearity.

Planarity:
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This feature has the valuation within the range [0, 1) where one
indicates maximal planarity.
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Scattering:
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This feature has the valuation within the range [0, 1] where one
indicates maximal voluminous distribution.

Omnivariance: )
Ox = (Ao~ A1 -Ag)'/? %)

has the valuation within the range [0, 1] where one indicates
maximal omnivariance.

Anisotropy:
Ao — A2
=5

has the valuation within the range [0, 1] where one indicates
maximal Anisotropy.

Ay &)

Eigenentropy:
E)\ = —)\oln()\o) — )\1171()\1) — )\an(Az) (6)

has the valuation within the range [0, 1] where one indicates
maximal disorder in the neighborhood.

R of k: Distance from query point to the furthest point in the
neighbourhood. Considering a kNN neighbourhood this is the
distance to the k-th point. In the case of the ball-shaped neigh-
bourhood, it is the distance of the furthest point to the query
point. If there is no point in the radius this value is zero. In
order to be always able to calculate all features, we added an €
in cases when A\, was zero.
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Figure 2. Eigenentropy as function of Ao and Aq

3.3 Reference Classification System

With the feature extraction techniques from the previous sec-
tions, we can create a set of numeric features for each point
based on a suitable definition of neighbourhood. The classifica-
tion problem now consists of finding a machine learning model
that can predict the class of a point given only these derived fea-
tures. We perform a spatial split on the datasets to have train and
test sets, train various classifiers on the selected training data
and evaluate the performance of the trained classifier on the test
set. In some cases, when hyper-parameter needs to be tuned, we
apply another hold-out set, that is, we train on a training set, use
a validation set to find the ideal hyperparameters and evaluate
the final performance on another spatially independent test set.
It is worth noting that a spatial split does not guarantee the inde-
pendence of the distributions. According to Toblers law (Tobler,
1970), everything is related to everything, but near things are
more related than distant things. Translating to the situation of
spatial machine learning, this just means that it makes sense to
expect the dependencies between the spatially distant train and
test sets to be smaller than if using just a random train test split
in which many of the points might be near to each other. Still,
the law tells us that the distributions are not independent, hence,
actual performance values have to be consumed with care: they
are related to the same spatial dependency of the train and test
sets. In many cases, the nature of the collection of the dataset
implies that it comes from the same city similar architecture,
similar car manufacturers, similar street signage are examples
of unavoidable correlations between the train and test sets.

3.4 Entropy-based Scale Selection

The structure tensor of a neighbourhood describes the covari-
ance of this neighbourhood. This can be seen as a description



of a random process generating points. The predictability of
these points can be captured by Shannons entropy by employ-
ing the Linearity, Planarity, and Scattering features from 3.2:

Edim = —Lkln(L)\) — P)\ln(P)\) — S)\ln(S)\) (7)

In fact, choosing k (the number of nearest points) such that this
information measure is minimized has been shown to work well
in practice (Weinmann et al., 2015). In addition, it is possible to
directly minimize the following expression avoiding the calcu-
lation of the features by using Ex. Figure 2 illustrates the the-
oretically possible distribution of the values. The eigenentropy
is minimal when Ao is maximal and \; is minimal. Linearity is
the dominance of one dimension Ag over the other two dimen-
sions. This dominance is described by planarity based on the
proportion of Ao against A\; and A2. As we aim to minimize the
eigenentropy we move toward cases where Ao is large and the
other two dimensions are small. In these cases, the normalized
Ao is describing approximately the linearity. Analogously \;
and )\, approximate planarity and scattering.

3.5 All-Scale Approaches

In this paper, we want to show that a scale-free approach is
feasible and provides comparable performance. There are two
general approaches to remove the scale parameter from the sys-
tem. In any case, we are going to compute all features for a
large set of scale parameters k or r.

In our approach, all of those features provide a high-dimensional
classification problem with many highly-correlated features and
the classification system must take care to select suitable sub-
sets of features. With respect to this problem, we propose to
use Support Vector Machines with 11 and 12 regularization, as
they are known to deal well with high-dimensional classifica-
tion problems, to perform a PCA on the set of features in or-
der to reduce the correlation between features, to use random
forests and Correlation-based Feature Selection (CFS) (Hall,
1999)to assess the feature importance in a first step and then
truncate the classification problem to include only the top fea-
tures, and to empirically test the improved performance of the
model trained on subset of features.

A single aggregated feature for all values of k is determined by
minimum, mean and maximum function. For each point and
feature we determin the minimal values, for example we select
for each point from linearity values for all scales the minimal
value what results in a new feature min_linearity.

3.6 Feature Selection

Our approach considers a large number of scales with a small
difference between the scales. This leads to highly correlated
features for the kNN and even more for the ball-shaped neigh-
bourhoods. In case when we extend a kNN neighbourhood with
a large k by only a few points the shape of the neighbourhood
changes only little and the resulting features are highly correl-
ated. For the ball-shaped neighbourhoods, the problem is even
more crucial. When increasing the radius only in little steps
there is a high probability of not including additional points in
the bigger neighbourhood and the calculated features remain
the same for a sequence of a sequence of scales.

In order to reduce the problems with correlated features, we use
Correlation-based Feature Selection (CFS) (Hall, 1999), a mul-
tivariant filter-based approach which uses Relevance measure

R to determine which feature are useful. We define p,. as the
average correlation between feature and class labels, p.. as the
average correlation between features and n as the number of
features. Then Relevance measure is defined as follows:

R(X1. n,C) = [Pac (8)

n+nn—1)pze

3.7 Feature Reduction

The problem of the correlated features described in the previ-
ous section can as well be treated by means of principal com-
ponent analysis (PCA) (Hotelling, 1933). PCA reduces a & di-
mensional space to an [ dimensional space where h > [. The
reduction is based on the projection of the initial space to a
space defined by an orthonormal basis where the eigenvectors
are defined by the direction of the largest variance of the data-
set. In our case we interpret each feature f; in feature set F,
with i < hN N, as a dimension of the h-dimensional space. We
aim to reduce F to a lower I-dimensional space F’ with h > [.
Let K be the covariance matrix between all features of F'. We
calculate the eigenvalues of K and select [ eigenvectors with
largest eigenvalues. The dimensionality [ is selected in a way
that the reduced feature space F contains a certain fraction ¢,
of the variance of the original feature space F'.

Random Forest (RF) is an ensemble classifier approach which
assumes that several weak classifiers compose into a better model
than a single strong classifier (Breiman, 2001). The weak clas-
sifiers can be trained based on bagging strategy (Breiman, 1996).
A subset of the training dataset is selected randomly and a weak
classifier is trained on this subset. The process is repeated a cer-
tain number of times, which generates an ensemble of different
weak classifiers. The aggregated hypothesis of this classifiers
provides a well-generalized prediction.

Support Vector Machine (SVM) is a binary classifier which
estimates a hyperplane to separate two classes in feature space
linearly. Since not always two classes can be separated linearly
a kernel function can be introduced which maps training data
to a higher dimensional feature space. We use the radial basis
function (RBF) as kernel. To apply SVM to multiclass prob-
lems, the one against all approach (Chang, Lin, 2011) is used.
In this case, several classifiers are trained. Each learns how to
separate one class from the others.

4. EXPERIMENTAL SETUP
4.1 Dataset

We test our framework on the Oakland dataset (Munoz et al.,
2009). It is a well-known dataset which was acquired by a
mobile mappings system. The dataset contains scenes from an
urban area. In our experiments, we used the classification with
5 classes. Those are the following. Facade: In general it can
be interpreted as a building. Load_bearing: Mostly this class
refers to roads and sidewalks. Utility_pole: This can be a tree
trunk or artificial pole like a lamppost. Scatter_misc: This class
consists of vegetation like tree crones, bushes or grass. De-
fault_wire: This class refers to different wires in the scenes.The
data is subdivided authors in to three spatially disjoint subsets
train, validate and test. The classes are highly imbalanced in
this dataset. Especially the classes facade and load_bearing are
over-represented.
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Figure 3. Label distribution in trainings dataset

4.2 Feature calculation :

We calculate the features for two definitions of the neighbour-
hoods the kNN and the ball-shaped. For each point in the data-
set, we determine the particular neighbourhood. The stated goal
of this paper is to work with all the neighbourhoods. The prac-
tical interpretation of this goal is that we calculate the features
for neighbourhoods in certain range [start,end]. A step is a
size between two adjacent neighbourhoods. For each of the
scales, we calculate all features described in section 3.2 For
the KNN neighbourhoods, we use the parameters start = 8,
end = 200 and step = 2 points. For the ball-shaped neigh-
bourhoods, we use the parameters start = 0.1, end = 8 and
step = 0.08 meter. The selected parameter values are based on
scale sizes from (Weinmann et al., 2013) and (Niemeyer et al.,
2014). The run time for the calculation of the features for the
given parameters is 9 minutes for 36932 points and 35 minutes
for 91515 points (CPU Intel 17-7700 and 16GB RAM).

The feature calculation results in the following feature sets:

1. All scales and all features of the ball-shaped neighbour-
hood set (all_r). Overall 1100 features per instance.

2. Four single scales and all features of the ball shape neigh-
bourhood set (r = z) = € {0.1,2,4,8}m. Overall 11
features per instance.

3. All scales and all features of the kNN neighbourhood set
(all_k). Overall 1100 hundred features per instance.

4. Four single scale and all features of the kNN neighbour-
hood set (k = z) =z € {10, 50, 100, 200} points. Overall
11 features per instance.

The four single scale sets for both neighbourhood are distrib-
uted evenly over the investigates scale ranges, what should us
allow to show the effects of missing context and blurring on the
classification performance.

4.3 Feature Reduction:

Based on all_r and all_k feature sets we generate simple ag-
gregated feature set (agr_r) and (agr_k) by calculating min-
imum, mean and maximum of the feature value series over the
scale of the neighbourhoods. In addition, we use the neigh-
bourhood scale of the max, mean or min feature value as a new
aggregated feature.

The PCA reduced feature sets (pca_r) and (pca_k) are gener-
ated from the all_r and all_k feature sets. The reductions are
determined by applying PCA with to the training set, result-
ing in 30 combined features in (pca_r) set and 16 features in
(pca-k) set the t, = 0.95 (see 3.7).

4.4 Feature Selection:

In the next step, we extract the features from the optimal scale
neighbourhoods given by on the minimal entropy criteria de-
scribed earlier. The feature sets for the two neighbourhoods
definitions (opt_r05) and (opt_k) are extracted by selecting the
scale with minimal eigenentropy for each point. The ball-shaped
eigenentropy values are often zero for small scales of the ball.
In sparse areas or for small scales the number of retrieved points
is too small. Therefore, we constrained the selected scale to a
minimum radius of 0.5m. Overall this set contains 12 features
with per-instance varying neighbourhood scales.

We apply CFS to the training subsets of the union over all_r,
opt_r, agr_r and the union over all_k, opt_k, agr_k. The result-
ing feature sets (cfs_r) and (cfs_k) contain each 59 features.

4.5 Measures

We evaluate the performance of the trained classifiers using
the measures precision, recall, fl score, accuracy. We define
TP, TN,FP,FN € N as number of correctly classified points
as a certain class, number of correctly not classified points as
a certain class, number of points falsely classified as certain
class, and finally number of points falsely not classified as cer-
tain class.

TP +TN
TP+TN+ FP+ FN

Accuracy =

®

Overall Accuracy (OA) is the ratio of the all correctly predicted
points to the all points with prediction.

. TP
Precision = TPLFP (10)
TP
Recall = TP FN (11)

= 2 x PrecisionRecall

12
Precision + Recall (12)

5. RESULTS AND EVALUATION
5.1 Feature Calculation:

Figure 4 shows the point cloud coloured by the linearity value
of each point. Colourisation changes depending on the scale
which was used for the calculation of the feature. On the left
side we can see how a scale of radius 0.1 leads to high values on
the planar wall of the tower, because the scale captures single
scan lines. The two larger scales do not have this problem, but
in this configuration the linear structures of the windows are not
identified.

Figure 5 shows three features as function of radius of the ball-
shaped neighbourhood. The features are averaged over all points
of the training dataset.

5.2 Feature Selection:

When using the minimal entropy approach, the scale of the se-
lected neighbourhood tends to be minimized as well. As we
can see at the diagram showing the distributions of the selected
scales this approach is able to select intermediate scales for the
kNN neighbourhoods and for the ball-shaped neighbourhoods
if use the 0.5m radius constrained.



Figure 4. Points coloured by linearity values in different scales:
0.1, 2 and 3, from left to right; (Red: 1, Blue: 0)

1
09
0.8
0,7
0.6
05
0.4
0.3

— linearity

0,2 |
01 = planarity
0 ‘\ eigenentropy

g&’\%'br\

AR SR K N I R ST R S LA S

‘Ir“!z‘b"l« BT BT B W

Figure 5. Linearity, Planarity and Eigenentropy as functions of
radius in meter. Horizontal axis shows the radius of the
neighbourhood in meters. Vertical axis shows the value of the
metrics.

The features selected by CFS consist of simple eigenvalues like
lambdas as well as of the features from the agr_r/k feature
set. Only a few features from the opt_r /k feature set have been
selected. The selected features are similar for the kNN and ball-
shaped neighbourhood. The selected scales are distributed over
the considered interval. Furthermore, the aggregated features
based on entropy and min, max, mean features are included.

Feature kNN k [#]
Tambdal k= {64, 110, 184}
lambda2 k= {10, 14, 38, 40, 46, 58,
76, 194, 200}
planearity k= {16, 24, 26, 28, 58,
102, 122}
scattering k= {8, 10, 12, 14, 18, 122}
anisotropy k= {12, 18}
omnivariance | —
eigenentropy | k= {22, 24, 26, 30, 32, 38,
54, 60, 62, 114, 126}
roof k k= {14, 164, 180, 196, 200}
optentropy {min, lambda2,
scattering, r_of_k}
min_feature {lambdal, lambdal _step,
scattering, anisotropy }
max_feature | {lambda2, planarity}
mean_feature | {planarity, scattering, omnivariance}

Table 1. CFS Selected Features - KNN
5.3 Classification

Figure 6 shows the overall accuracy results for all feature set
configuration for the kNN neighbourhoods. The values are sim-
ilar, and the worst performance of 0.72 had the set with a single
scale k=10. The feature sets CF'S and all provided the best and
equal results of 0.86.

Feature Ball Shaped r [m]

JTambdal -

lambda2 ={0.42, 0.50, 0.58, 0.74, 1.23, 1.38,
1.46, 1.54,2.34,2.42, 2.50, 2.82,
4.18,7.62}

planearity r={0.42, 0.50, 0.58, 0.66, 0.74, 0.90, 0.98}

scattering r={0.50, 0.58, 0.74, 0.90, 1.06}

anisotropy -

omnivariance | r={0.41,0.73, 1.14, 1.22}

eigenentropy | r={0.49, 0.58, 0.73, 0.81, 0.89,
0.97, 1.05, 1.14, 1.53, 2.01}

chg_of_curv r={0.58, 1.38}

roof k -

optentropy {rof k}

min_feature {lambda2 _step, scattering_step,
anisotropy, r_of k}

max_feature {lambdal, lambda2,
linearity_step, planarity, scattering }

mean_feature | {lambda2, scattering, omnivariance,
anisotropy }

Table 2. CFS Selected Features - Ball Shaped
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Figure 6. Overall Accuracy - kNN neighbourhood

Figure 7 shows the overall results for all feature set configura-
tion for the ball-shaped neighbourhoods. The results here vary
between 0.18 for RF and single scale of » = 8m and OA of
0.89 generated by single scale feature set r = 2m and SVM.
The feature sets C' F'S and all have the OA of 0.89 and 0.88.
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Figure 7. Overall Accuracy - Ball-shaped neighbourhood

The unweighted F1 score overview for the kNN neighbour-
hoods is shown in figure 8. The results in this diagram have
the same tendencies as the values in figure 6, but all values
are lower. Analogously behave the results in figure 9 which
presents an overview of unweighted average F1 scores for the
ball-shaped neighbourhoods. The highest values generated RF
models with feature sets CF'S and all.
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Figure 9. F1 - Ball-shaped neighbourhood

The figures 10 and 11 show the F1 scores per class for the ball-
shaped neighbourhoods in combination with RF and SVM. The
class load_bearing is predicted with most homogeneous results
and reaches several times values of more then 0.90. The class
scatter_misc has similar results except the very poor perform-
ance for the smallest single scale » = 0.1m. A high variation
of results we can see for the class facade with maximal F1
score of 0.57 for C'F'S feature set combined with RF. The class
utility_pole has a poor performance for the single scale con-
figuration and the best F1 score of 0.31 fore the all feature set.
The worst F1 scores, compared to other classes, both models
reached on predicting the class de fault_wire. The best res-
ult for this class is 0.13 and it was reached by SVM applied to
opt. Entr feature set.
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Figure 10. F1 - Ball-shaped neighbourhood, class wise
performance of the Random Forest

Table 3 show the direct comparison between the two best per-
forming configuration C'F'S and all feature set which are both
combined with the RF. Both feature set lead to similar result
except the bold entries.

1

09

08

0.7

06

05

04

03

02

01

0

rDl r2 8 CFS mmm pca all opt. Entr.
mfacade Ioadibearlng utility pole m scatter_ misc B default wire
Figure 11. F1 - Ball-shaped neighbourhood, class wise

performance of the SVM
Precision Recall F-Measure
cfsr | allr | cfsr | allr | cfsr | allr

facade 052 1047 10.63 | 0.60 | 057 | 0.52

load_bearing 097 | 097 | 094 | 093 | 095 | 0.95

utility _pole 0.18 | 0.25 | 041 | 041 | 0.25 | 0.31

scatter_misc 0.97 | 095 | 0.82 | 0.79 | 0.88 | 0.87

default_wire 0.04 | 0.04 | 0.82 | 0.87 | 0.07 | 0.08

Weighted Avg. | 0.93 | 0.92 | 0.89 | 0.88 | 0.90 | 0.90

Table 3. Performance measures of the best performing
configurations: Ball-shaped neighbourhoods, RF

5.4 Analysis and Evaluation of neighborhood structures

Overall results show similar performance as the results of (Wein-
mann et al., 2015). Direct comparison is not possible due to the
different feature sets, nevertheless we conclude correctness of
our introduced framework, from the similarity of the results.

5.4.1 Performance of Single Scale Neighbourhoods Ex-
periments with single scale feature sets show typical behaviour
of low performance for small scales due to the lack of context
information for the classification. Large scales have decreasing,
or at least not improving performance as can be expected from
the blurring effect (compare figures 6, 7, 8 and 9). The OA score
of the r = 2 feature set combined with SVM is high and even
the best in its series (with an accuracy of 0.89), nevertheless it
should not be overestimated. The unweighted F1 score, which
is not biased by over represented classes like load_bearing and
scatter_misc, for the same configuration is out performed by
the CF'S and all feature sets in combination with RF.

5.4.2 Performance of all Scale Neighbourhoods Overall
results show that the usage of scale range outperforms markedly
single scale feature sets and and the optimal entropy feature
set is outperformed by all configurations of the C'F'S and all
feature sets, achieving accuracies in the range of 0.86 to 0.90.
Exception of this trend is the result for prediction of the class
default_wire. The property of the optimal entropy approach
to converg towards large Ao and therefore linear feature allows
better prediction for the linear objects. The relevance of the sev-
eral scales is although shown by the features selected by CFS.
The scales this features are distributed over the whole range of
the investigated scales (see 2).

6. CONCLUSION

The best performance was achieved using the all_r and cfs_r
feature sets. The all_r feature set consists of a large number of
features in different scales and provides context as well as detail



information to a classifier. This information is capable of im-
proving the classification performance, however on the costs of
computation time. In cases when the optimal scale is selected
based on the range of precomputed features of different scales,
it is reasonable to use not only one optimal scale but several. Ei-
genentropy along the scales tends to have several local minima
which could be used instead of selecting a single scale based
on global minima. The feature selection with CFS leads to a
slight improvement of performance. The selected feature scales
subsample the scale intervals with a resulting higher delta scale.
This empirical delta scale should be considered in future exper-
iments to reduce calculation time.

The all-scale approach improves classification performance. In
order to be practicable, the calculation time must be enhanced
using GPU based computation and incremental calculation of
features along with the scale interval. State of the art for the
semantic label of point clouds is provided by the deep learn-
ing networks, which although employ neighbourhood and scale

definition. Especially approaches like (Landrieu, Boussaha, 2019)

and (Landrieu, Simonovsky, 2018) using only one constant scale
size to calculate features indicating similarity of points, can be
extended with an all scale-feature extraction. Integration of the
all-scale approach should improve performance of such models.
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