
GIS++: Modern C++ for Efficient and
Parallel In-Memory Spatial Computing

Martin Werner
martin.werner@unibw.de

Institute for Applied Computer Science & Forschungsinstitut CODE,
Bundeswehr University Munich, Germany

ABSTRACT
In this workshop, the participants get a deep dive to spatial comput-
ing on top of the Boost Geometry Library in C++. The workshop
will highlight core concepts of generic programming, give hands-on
experience in the area of OGC geometry and range and nearest
neighbor queries based on arbitrary combinations of OGC and cus-
tom predicates. Finally, the tutorial gives an outlook how easy it
has become to interface with covering libraries including GDAL,
Python, and OpenGL.

CCS CONCEPTS
• Information systems → Data structures; • Software and
its engineering → Development frameworks and environ-
ments; Software creation and management.

KEYWORDS
Spatial Computing, C++, Spatial Indexing, Spatial Queries, OGC
Simple Feature Geometry
ACM Reference Format:
Martin Werner. 2019. GIS++: Modern C++ for Efficient and Parallel In-
Memory Spatial Computing. In 1st ACM SIGSPATIAL International Workshop
on Geospatial Data Access and Processing APIs (SpatialAPI’19), November 5,
2019, Chicago, IL, USA. ACM, New York, NY, USA, 2 pages. https://doi.org/
10.1145/3356394.3365587

1 INTRODUCTION
Spatial computing can be very challenging because of the variety
and complexity of the topic. Many systems have been proposed
that are optimized for performing certain operations with high per-
formance. Other systems and frameworks have been proposed that
can bridge a wide variety of topics, however, typically sacrificing
efficiency by a significant margin.

However, there is a huge amount of high-quality, peer-reviewed
software libraries that can bridge many worlds all being based in
the same philosophy of generic programming and so-called con-
cepts, which basically are abstractions of data types allowing careful
implementations of different variants of algorithms for all reason-
able situations and applying the right subset of these algorithms

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SpatialAPI’19, November 5, 2019, Chicago, IL, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6953-4/19/11. . . $15.00
https://doi.org/10.1145/3356394.3365587

at runtime while performing the selection at compile time. The
result is that a generic library with its many variants does not need
any runtime code to select among the available implementations
leading to exceptional performance gains in contrast to similarly
flexible libraries, for example, based on object orientation.

In this tutorial, we want to expose interested participants to the
beautiful world of modern C++ (to us, this means C++ since full
adoption of the C++11 standard). In contrast to current mainstream
solutions based on R, Python, Java, or similar low-profile languages,
being able to implement code in C++ brings us many advantages
in terms of

• efficiency and performance,
• immediate technology support including shared memory
multiprocessing (SMP), supercomputing (MPI), GPU com-
puting (OpenACC, NVIDIA thrust),

• source code portability,
• elegance, and
• library quality and support, and
• the ability to bind to a multitude of low-profile languages,
most notably R and Python.

With these core features, it is surprising that the hard work
behind the generic Boost libraries has not yet been adopted by the
spatial computing community still sticking with old prejudice about
C and C++ being difficult to learn and insecure to use. A first step to
breaking the dominance of Java and Scala-based Big Data systems
is, therefore, to show the power and simplicity of modern C++ for
spatial computing research.

2 WHATWILL BE COVERED?
This tutorial will be split into three parts, each consisting of a
comparably short introductory presentation and a longer practical
session. In the first part, Intro and Recap, we will collect the au-
dience and bring everyone into the position of compiling sample
code and knowing the main ideas of modern C++ (a bit). Then, we
will start our deep-dive into Boost Geometry, an excellent, easy-
to-use, complete, peer-reviewed, and highly performant library for
doing spatial computing on top of your own already existing data
types. A last section will show next steps and give hints on how to
integrate with other libraries including GDAL (for data I/O), HDF5
(for parallel I/O and supercomputing), with Python (for easy usage,
QGIS integration), with OpenGL and CUDA (vertex buffer objects)
for real-time visualization or GPU computation, and reserve a few
minutes for individual questions and discussions.

https://doi.org/10.1145/3356394.3365587
https://doi.org/10.1145/3356394.3365587
https://doi.org/10.1145/3356394.3365587

SpatialAPI’19, November 5, 2019, Chicago, IL, USA Martin Werner

2.1 Intro and Recap (30 minutes)
In order to make a useful tutorial, we will expect all participants to
be familiar with traditional C, C++, or Java. We will quite quickly
explore how modern C++ is different from classical C and C++ and
show some simple generic recipes including safe pointers, parallel
loops and thread synchronization and give a tour of the three main
containers in the standard template library: maps, lists, and vectors.
It will be very helpful if participants have read about these concepts
already.

With respect to applying these concepts, we will distribute access
credentials to all users to the ICAML platform [2] and compile a
“Hello World!” program with a simple Docker container.

2.2 The Generic Geometry Library (aka
Boost.Geometry, 60 minutes)

Next, we will introduce the Boost Geometry Library [1]. This library
is a generic library in which many aspects are controlled at compile
time and the optimization stage of modern C++ toolchains gets
away all the boilerplate code that is needed for full flexibility. Just
to name a few features:

• fully independent of data representation,
• supports different coordinate systems (Euclidean, Spherical,
Geographic) for many algorithms,

• all algorithms have the same and simplest name, for example,
distance means distance in the associated coordinate system,

• full OGC Simple Feature support including operations and
relations,

• excellent spatial indexing support with flexible query inter-
faces.

We will start learning how basic geometry (points, polygons,
linestrings, and boxes) are declared and attached to already existing
types and how coordinate system tags are attached and used for
automatic algorithm selection. Then, we will show how to build
container out of these representing MultiPoint, MultiLinestring,
and MultiPolygon geometries.

We will continue showing how basic operations for simple ge-
ometry (e.g., ST_Repair or ST_Buffer) can be applied and how the
dimensionality-enhanced nine intersection model (DE-9IM) rela-
tions between different geometries can be computed including
parallel execution.

We will continue to explore the library boost::geometry::index
bringing various spatial indexing trees including R* trees (with
bulk loading support) to your system and how you can use them
in a filter-and-refine manner or as well for exact queries including
custom predicates. In this section, we will heavily rely on C++11
lambda expressions in order to reach exceptionally readable code
with astonishing runtime behavior.

We will briefly cover how to read and write well-known text
(WKT) and apply all that we have learned for assigning city names
to points, e.g., for a simple spatial join operation including import
and export from WKT CSV (for use with QGIS).

2.3 Outlook and Road Ahead (30 minutes)
In the last half an hour, we will show to the audience next steps
illustrating how powerful this approach turns out in practice. We
will show with minimal examples (show, not teach),

• how parallel file systems can be easily integrated using the
HDF5 library,

• how GDAL can be used to load (nearly) arbitrary GIS files
directly

• how implemented functionality can be exposed to Python
in just a dozen lines of code (including NumPy)

• how the Boost Graph Library can be used together with
Boost Geometry

• how a different coordinate system distance calculation can
be instantiated and applied

In summary, we show the power of the given libraries and of
the whole C++ ecosystem for current and future spatial computing
needs and hope that we will encourage more and more people
to learn that C++ (since C++11, but even more with C++17, and
C++20) has become a better and better programming language
while getting easier and easier to use.

3 PARTICIPANT PREPARATION
Participants should have written programs in one of the major
imperative programming languages (Python, C++, C, Java, PHP, ...).
Some knowledge of generic programming, functional programming,
and parallel programming is helpful, but not expected.

We will provide a Web-based remote system for having an equal
play ground for all participants through our Interdisciplinary Center
for AppliedMachine Learning (ICAML) [2]. Participantsmightwant
to have a simple GIS like Quantum GIS (QGIS) [3] installed on their
local computer in order to easily inspect data and results during
development as we skip a time-consuming introduction to how
spatial data should be visualized in the modern C++ ecosystem.

Advanced participants can check out the web page of this tutorial
at https://www.martinwerner.de/teaching/spatial-cpp to learn, how
to set up a development system using a modern Linux or Docker.

ACKNOWLEDGMENTS
We acknowledge support from the Interdisciplinary Center for Ap-
plied Machine Learning (ICAML). The ICAML is funded by the
Federal Ministry of Education and Research, Germany (Bundesmin-
isterium fur Bildung und Forschung, Forderkennzeichen 01IS17076).

REFERENCES
[1] Barend Gehrels, Bruno Lalande, Mateusz Loskot, AdamWulkiewicz, and Menelaos

Karavelas. 2019. The Generic Geometry Library (GGL) a.k.a. Boost::Geometry.
https://www.boost.org/doc/libs/1_70_0/libs/geometry/doc/html/index.html.

[2] ICAML 2019. Interdisciplinary Center for Applied Machine Learning (ICAML).
http://www.icaml.org.

[3] QGIS 2019. Quantum GIS (QGIS) . https://qgis.org.

https://www.martinwerner.de/teaching/spatial-cpp
https://www.boost.org/doc/libs/1_70_0/libs/geometry/doc/html/index.html
http://www.icaml.org
https://qgis.org

	Abstract
	1 Introduction
	2 What will be covered?
	2.1 Intro and Recap (30 minutes)
	2.2 The Generic Geometry Library (aka Boost.Geometry, 60 minutes)
	2.3 Outlook and Road Ahead (30 minutes)

	3 Participant Preparation
	Acknowledgments
	References

