
Spatial Data Locality in Scalable and
Fault-tolerant Distributed Spatial Computing Systems

Martin Werner
Remote Sensing Technology Institute (IMF)

Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen
martin.werner@dlr.de

ABSTRACT
In the last decade, spatial datasets started to grow from small collec-
tions of high quality geospatial information into huge collections of
data covering the whole planet with varying formats and qualities.
Large-scale spatial datasets are about to create significant value in
varying application fields including navigation, autonomous driv-
ing, urban geography, agriculture, and climate research. Therefore,
large datasets are actively acquired. In addition, social networks
such as Facebook, Twitter, and Flickr provide text, video, and im-
ages with associated geospatial information from the crowd. These
sources are highly interesting as they provide near-realtime insights
into aspects of human behavior and dynamics. Finally, global and
long-running satellite missions such as Landsat, Sentinel, World-
View, or TerraSAR add large amounts of geospatial information. It
is a matter of fact that these data collections are putting challenges
to the computational infrastructure used for spatial computing. Not
only do we need a lot of computation, we also need to think about
how to organize and design distributed systems that can help tackle
the volume, velocity, and variety of current and future geospatial
datasets. Modern big data systems employ data replication for two
main reasons: first, for increased fault tolerance, and, second, for
higher flexibility in scheduling tasks across a large cluster of ma-
chines. This paper proposes and compares novel data replication
schemata for scalable spatial computing and analyzes the impact
on the communication complexity of global spatial joins of a large
collection of tweets collected from the Twitter API and building
polygons extracted from OpenStreetMap.

CCS CONCEPTS
• Information systems → Key-value stores; Data replication
tools;

KEYWORDS
Spatial Big Data, Data Replication and Distribution; Spatial Join
ACM Reference Format:
Martin Werner. 2018. Spatial Data Locality in Scalable and Fault-tolerant
Distributed Spatial Computing Systems. In 7th ACM SIGSPATIAL Inter-
national Workshop on Analytics for Big Geospatial Data (BigSpatial 2018),

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
BigSpatial 2018, November 6, 2018, Seattle, WA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6041-8/18/11. . . $15.00
https://doi.org/10.1145/3282834.3282837

November 6, 2018, Seattle, WA, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3282834.3282837

1 INTRODUCTION
In the last decade, more andmore spatial data is generated every day.
In addition, many services scale into serving all users across a global
digital world. Therefore, not only large datasets are generated,
but also large spatial areas are covered. This trend is reflected
in the increasing interest of exploiting such data in research and
business. For example, in the context of disaster management, the
timeliness of social media is convincing [1, 11], for urban mobility,
the trace information from social media network check-ins reveals
interesting patterns [10]. There are many more such examples,
but especially due to the current satellite missions, research starts
focusing on global patterns. For example, the DLR has published
the Global Urban Footprint (GUF) [6], which represents the whole
world as a raster image in which each pixel denotes built-up or
non-built-up area.

This trend poses severe challenges to spatial computing infras-
tructures. In general, parallelization of data and tasks is a simple yet
effective means of scaling earth observation and spatial computing
to global coverage. However, there are situations in which the data
is not yet spatially condensed. For example, when collecting social
media messages, they arrive in a temporal ordering, but their spatial
component can be seen as a random sample from an underlying
distribution in which cities are hotspots and rural areas emit less
tweets. In this situation, the parallelization of operations relating
two datasets becomes challenging, because they both are larger
than the main memory that is practically accessible. Therefore, dis-
tributed computing systems have been extended to deal with the
special properties of spatial data [2, 4, 12].

In general, big data systems rely on a mechanism of replication
for two reasons: first, fault tolerance, because a failing node does
not lead to an application-level failure greatly simplifying adminis-
tration and operation of large clusters, and, second, for decreasing
the communication between different physical nodes in a cluster,
because this is often the performance-limiting factor.

There are some standard and basic data distribution schemes that
have been applied by the previously mentioned systems including
block-based distribution following grids or R*-trees and ordering-
based distribution using space filling curves.

However, to the best of our knowledge, mechanisms for spatial
data replication have not been studied in this context. Instead, sys-
tems often rely on an underlying storage layer such as HDFS for
replication and fault-tolerance not taking into account the oppor-
tunities of the storage redundancy for later query processing.

https://doi.org/10.1145/3282834.3282837
https://doi.org/10.1145/3282834.3282837

BigSpatial 2018, November 6, 2018, Seattle, WA, USA Martin Werner

With this paper, we want to address the question and propose a
viable solution for the following problem:

Problem 1. Given a large cluster of computers, how can we struc-
ture data distribution across nodes such that we obtain a fault-tolerant
system in which the replicated data is still useful for processing geo-
graphical analysis?

We propose a fixed distribution scheme for primary data and
propose several strategies on where to place replica in order to
increase data locality. The overall performance is measured by
performing a global spatial nearest neighbor join. Concretely, we
assign a large dataset of tweets each to the nearest building in order
to analyze the buildings in terms of the social media messages from
their vicinity.

It is worth noting that the proposed mechanisms are generic in
the sense that they can be integrated into any distributed computing
system. However, the gain of these approaches depends on the
interplay between the storage engine and the query processing
engine, which is sometimes easier and sometimes harder to adapt
to increasing flexibility. However, we are not proposing a novel
system, but rather a novel algorithm for data replication in fault-
tolerant distributed computing systems.

We show that the basic strategy of using a ring-structure together
with a Z curve works quite well, but propose two other strategies
optimized for different aspects: one strategy is able to reduce the
number of incomplete results that need to be shuffled across the
cluster to the nodes having the missing data and another one is
optimized for data locality generating significantly more refinement
need, but each one with a smaller coverage and, therefore, easier
to solve.

The remainder of the paper is structured as follows: in the next
Section 2, we introduce terms related to spatial big data and related
work needed to set the right context for this paper. In Section
3, we discuss some properties of a widely studied space-filling
curve known as Z curve or Morton order. These observations build
the intuition for the constructed replication schemata. In Section
4, we introduce three important queries that jointly come up in
the example workload of a global spatial join: nearest neighbor
queries, range queries, and spatial join. Section 5 introduces novel
replication strategies, how the replicas of a spatial data object are
distributed. In Section 6, we evaluate the various strategies using a
realistic workload of joining tweets and buildings. Section 7 draws
conclusions and gives hints on future research.

2 RELATEDWORK
Spatial computingwith big data has received an increasing attention
over the last years. Basically, it is the intersection of two active
fields of research: spatial algorithms and big data.

2.1 Big Data
Big Data has ever been a very coarse and evolving term and is not
clearly defined. However, a widely adopted characterization of Big
Data has been given by Laney [8] in 2011. He proposed the three
dimensions Volume, Variety, and Velocity (3V). Of course, these
three aspects somehow describe the term big data in the sense of
fixing dimensions for a characterization. However, there is still and

active and ongoing discussion on which aspects are most important
and which characterizations of big data are better [9, 14].

The growth in volume and velocity, as well as the complexities
induced through variety, lead to situations in which classical data-
base management systems cannot efficiently be used to support
data analysis.

Given the 3V definition of big data, some coarse conclusions can
be drawn:
• The sheer volume of data implies that the data needs to be
stored in some sort of a distributed system.
• The velocity of the data implies that maintaining consistency
and timeliness becomes prohibitively hard.
• The variety and complexity of the data renders preprocess-
ing or optimized data structures largely unrealistic. Instead,
processing must work with the data as is without much
preprocessing

In this area, two schools of computing are challenging each
other: one trend is to use cloud computing and elastic computing in
which large amounts of cheap compute resources are orchestrated
on demand to build a distributed system that can cope with the
given challenges. Another way of dealing with these challenges is
to maintain a high-performance computing system that can deal
with the challenges.

As the first approach gives higher performance per dollar, it is
a preferred way for Internet companies. The second approach is
limited to research centers that can afford the extreme cost of buying
and operating supercomputers. However, these architectures, in
general, can offer better peak performance as compared to cloud
infrastructures. And, in addition, they can be cheaper in practice
for many researchers, as access to these clusters is often possible
for research without payments. That is, for an average scientist,
the question, which paradigm to follow, is extremely difficult to
answer: while much open source is organized around the cloud
computing paradigm, it is not easy for the researchers to access
cloud computing resources with more than a few hundred CPUs.
However, access to decent supercomputers is available for most
universities without cost for the individual researcher including
access to thousands of CPUs per job.

2.2 Geospatial Big Data
In geospatial big data, we are facing the question on how to dis-
tribute spatial data as well as queries over a large number of com-
puters. This is true for both cloud computing as well as for high-
performance computing scenarios. The distribution of data will
enable us to split global spatial computing problems into local in-
stances that can be solved by a single computer or a few nodes
given only the local data.

Data distribution is related to several other properties of a dis-
tributed big data system having significant impact on the overall
performance and scalability: data locality, fault tolerance, cluster
utilization, and repair complexity are some significant examples:
First of all, we are interested in a way of distributing data across
such that most computations can lead to good results with data that
is only local to the machine. In this way, we can reduce network
communication in the cluster, which is often a significant bottle-
neck. To the contrary, however, when data locality is employed,

Spatial Data Locality in Scalable and
Fault-tolerant Distributed Spatial Computing Systems BigSpatial 2018, November 6, 2018, Seattle, WA, USA

one consequence is that queries to the data will be served according
to this data locality, too. This essentially means that data locality
pays off best if the distribution of data and queries is similar and
will create significant hotspots and skewed cluster utilization if the
distributions differ. Therefore, some big data architectures includ-
ing Apache Cassandra have adopted a random data distribution by
default. This leads to a uniform allocation of resources to randomly
incoming data and queries and is clearly the best stateless strategy,
when there is no information about the involved distribution of
queries and data.

In contrast to the general case, however, we have some principles
of geography that vote against a random distribution of spatial data
across a cluster. The most basic principle is known as Tobler’s first
law of geography: “Everything is related to everything else, but near
things are more related than distant things” [15]. This translates
into the expectation that any query workload will usually have a
spatial component making it local increasing the usefulness of data
locality and at the same time increasing the risk of hotspots and
skewed cluster utilization for queries.

An additional twist on data distribution has been introduced
lately by insisting on fault-tolerance of distributed systems. When
using cheap off-the-shelf hardware and elastic compute services,
we do not expect that compute resources are available from the
beginning to the end. Instead, we will lose some of our computers
by errors from hard- and software as well as by scaling operations.
Such architectures will only work efficiently, if all data is distributed
to different locations in the cluster enforcing a sufficient level of
replication. In this context, the mapping of data across machines
will map each block of data to a set of nodes. This set of nodes can be
guided by data locality, but it needs to fulfill additional constraints
such that different racks or datacenters are employed.

With this paper, we want to study data distribution schemes of
geospatial data in large distributed computing systems. Though
fault tolerance might not (yet) be needed in HPC supercomputers
as the underlying architectures are largely based on the assumption
that there are no faults during a computation, it can still increase
performance significantly for spatial workloads by increasing the
spatial knowledge available at each node.

For spatial data distribution, we can distinguish two general
approaches: block-based distribution in which a (logically) central
entity takes care of assigning blocks to nodes and managing the
replication and ring-based architectures in which an ordering of
data assigns data to a primary node and replication is managed by
this node.

The block-based distribution is applied, for example, in Apache
HDFS and Google GFS and provide the underlying storage architec-
ture of traditional big data systems such as Apache Hadoop, Apache
Cassandra, Apache HBase and others. Blocks form an atomic unit
of data management and data access. As these blocks are rather
large (i.e., Apache Hadoop propagates a default value of 64 MB),
the management overhead is small enough even in large clusters of
machines though theoretically bounded by the ability of a central
component to manage these blocks and their distribution.

This approach has been extended to spatial data by assigning
blocks to nodes from a central entity using various spatial indexing
structures. In SpatialHadoop, for example, a master node maintains
a global spatial index used to map data and requests to nodes while

each node employs a local spatial index to organize and speed up
queries with respect to the local data [5]. The underlying indices are
a grid index, an R-tree and an R+-tree. This framework is extended
by adopting the Z-curve and the Hilbert curve as additional indices
for Spatial Join workloads in [4]. In a similar fashion, SparkGIS uses
grids, binary space paritioning trees, strips, Sort-Tile-Recursive
(STR), and the Hilbert curve for distribution of spatial data and
queries.

In contrast to that, the ring-based architectures have been pro-
posed in which all nodes are ordered in a ring-based structure
and replica move along the ring to the next node that is possible
given the constraints (that is, usually the next k nodes that jointly
fulfill the constraints). This setup, in addition to that operations
like inserting or removing a node trigger mostly ring-local com-
munication also provides a good basis for data locality in range
queries.

For classical data, Apache Cassandra is a typical reference [7].
Apache Cassandra organizes nodes into a ring by dividing a key
space into intervals called Tokens. A data object in Cassandra is
first assigned a key, either directly or through random hashing. In
addition, each ring node owns a token, which represents the range
of keys that should go to this node. This node is then called the pri-
mary node for the data and is responsible for managing operations
with respect to this data including replication. Replication is then,
basically, performed along the ring. The primary node forwards
data objects for replication along the ring and the next node that
meets the given set of criteria (e.g., different physical node, rack, or
data center) is going to store a copy. If a node fails, the neighboring
nodes just extend their tokens to take over the range. An additional
twist is to decouple the physical cluster from the tokens by intro-
ducing virtual nodes (vnodes) [17]. In this case, each physical node
is split into a set of vnodes that each own a token. In random token
distribution, this reduces repair time and increases flexibility, when
the capacity, performance, or workload are skewed: you can move
vnodes across the ring reducing hot spots.

3 SPATIAL REPLICATION
Though advanced distributed systems have been extended for spa-
tial data handling including SpatialHadoop [5], HadoopGIS [2],
SparkGIS [3], MD-HBase [12], and others, the general question of
spatial data replication has not been discussed in detail. In addi-
tion, the raw scalability of these systems has not been evaluated
as the current spatial datasets are either not so large in footprint
consisting of many very small objects (e.g., points, polygons, etc.)
or rather few, very huge objects such as satellite imagery or spatial
rasters.

With this paper, we want to study the impact of data replication
strategies on workloads such as spatial joins of global datasets of
small objects.

We employ a ring-based architecture for distributing the data
across the nodes. In this way, we reach a linearly scalable system
without the need for a central component. Like in the Apache
Cassandra architecture, each node in the cluster can - at any time -
compute the primary nodes for a given spatial data item. The only
prerequisite is to maintain a globally consistent view of the nodes
and their respective tokens. In fact, we even don’t need to maintain

BigSpatial 2018, November 6, 2018, Seattle, WA, USA Martin Werner

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X

Y

(a) Hilbert Curve (k = 1)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

X

Y

(b) Hilbert Curve (k = 2)

0 5 10 15

0
5

10
15

X

Y

(c) Hilbert Curve (k = 4) (d) Locality of the Hilbert Curve

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X

Y

(e) Z Curve (k = 1)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

X

Y

(f) Z Curve (k = 2)

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

X

Y

(g) Z Curve (k = 3) (h) Locality of the Z-Curve

Figure 1: Two widely used discrete space-filling curves for enumerating grid cells preserving locality.

0

X

Y

0

1

2

3

4

4 3 2 1

Binary
Representataion

3: 0x0011b
1: 0x0001b

0x00001011b : 11

Mix

0: 0x0000b
3: 0x0011b

0x00000101b : 5

Figure 2: The Z curve encoding and decoding process

this state in all circumstances, because if we detect that a primary
node is not responding, we can alternatively contact one of the
replica of this node according to the strategy.

Space-filling curves are a perfect match for this ring-based archi-
tecture. The two most promising space-filling curves for ordering
spatial data are the Hilbert curve and the Z curve depicted in Figure
1. Figure 1(d) illustrates the data locality of the Hilbert curve. Both
axes range over all keys and the color indicates the spatial distance
of the cells. The triangular structure indicates that pairs of similar
keys have a small spatial distance. Figure 1(h) depicts the same for
the Z curve and though it is more fractal and - in general - shows
higher values, it is still clearly providing good data locality with
small values nearer to the diagonal.

The advantage of the Z curve is that it is very efficient to calculate
in both directions: from a point into a curve index and from a curve
index into the cell.

Figure 2 depicts the process of encoding and decoding in the
case of the Z curve for two dimensions. In general, The Z curve
in n-dimensional space is constructed as follows: Given a point
p = (x1 . . . xn), each of the coordinates is discretized according
to a previously chosen discretization of the axis and stored as an
unsigned integer. The discretized point, therefore, has unsigned
integer coordinates pd = (d1 . . .dn) where each di is the result of
a discretization of the range of xi . The integer curve rank value is
then constructed by mixing and interleaving the bits from these
unsigned integer representations.

Examining the properties of the Z curve in more detail, it is
easier to study the curve by characterizing the connections of a cell
p = (x,y) and the cell of its successor ϕ−1 (ϕ (x) + 1)

When the number ϕ (x) is an even integer number, its binary
representation ends with a zero. Hence, only one bit changes for
the increment, namely the last bit. With respect to our ordering of
the mixture of bits, this amounts to a horizontal connection of the
two neighboring cells (x+1,y). In all other cases, a diagonal edge is
constructed. If the number is non-even, the length of the diagonal
depends on the first bit location, where the overflow from the incre-
ment operation is absorbed by a zero, because this amounts to the
number of bit changes for the mixture and, therefore, also defines
the number of bit changes for the two coordinates in ϕ−1 (x). As-
suming that we are using a complete, finite ring of all non-negative
integer numbers from 0 . . . 2l−1, the absorbtion of the overflow bit
will take place in the first position from the end, where there is a
zero. Looking at all bit sequences of uneven numbers, we see that
the absorption takes place in place j in 2−j cases.

Spatial Data Locality in Scalable and
Fault-tolerant Distributed Spatial Computing Systems BigSpatial 2018, November 6, 2018, Seattle, WA, USA

Bit Sequence Incremented Offset (x,y) L1 Frequency
*******0 *******1 (0,+1) 1 128
******01 ******10 (-1,+1) 2 64
*****011 *****100 (+1,-1) 2 32
****0111 ****1000 (-3,+1) 4 16
***01111 ***10000 (+1,-3) 4 8
**011111 **100000 (-7, +1) 8 4
*0111111 *1000000 (+1,-7) 8 2
01111111 10000000 (-15,+1) 16 1
11111111 00000000 (-15,-15) 30 1

Table 1: Bit Patterns and their Connection in a regular Z-
curve (8 bit)

Table 1 lists a concrete example of all numbers with 8 bits (that is
4 bit for X and 4 bit for Y). In this table, an asterisk (*) denotes a bit
with unspecified value that does not change between the columns.
The second column shows the increment of all bit sequences of
this pattern - all asterisk bits are unchanged between the columns.
The specified part of the bit sequence already defines the offset in
X and Y for ϕ−1 given in column 3. In addition, the L1 distance is
shown. In general, depending on whether the overflow absorption
takes place in bits related to X and Y, the operation on X and Y is
increment (e.g., +1). The effect on the other coordinate is flipping a
full 1 sequence of a specific length to zero (e.g., 0b111 is mapped
to 0b000 related to a negative of 2l − 1). In the last line, a special
situation of overflow occurs.

This perspective on the Z-curve helps us to understand, how
far the cells associated with neighboring keys are away within the
spatial domain. In fact, most increments lead to small movements
in the space. Longer movements occur if and only if longer parts
of the binary value flip during increment. Another aspect of the Z-
curve can easily be seen from the exposition of the last paragraphs
and Table 1: During successive increments (e.g., along the order
induced by the Z-curve) the movements of L1-length l >= 2k are
spaced equally across the index space. This is due to the fact that
the number of increments between two events of the same bit mask
is 2l , where l is the number of ones that flipped to zero in the event.

4 QUERIES IN SYSTEMS WITH SPATIAL
DATA LOCALITY

In this work, we are going to optimize data locality for specific
types of queries that often occur in spatial and spatio-temporal
database systems. In this context, we are assigning a contiguous
range of keys under the mapping ϕ to each of these nodes. These
nodes are called primary nodes for the specific key range. Data with
this key or queries with this key are – at first – mapped to these
nodes.

However, due to replication, the same data exists in different
places and the nodes holding such replicated data are called replica.
These replica are usually put into different location in order to solve
the problem that a primary node might fail. In this case, one of the
replica first takes over the role of the primary node for this, answers
queries related to this, and supports the repair operations in which
the data distribution among nodes is being changed.

This data locality is, however, not only useful for introducing
fault-tolerance. Instead, it can be used to reduce communication in
typical queries, where several different primary nodes would need
to contribute. Three important spatial operations are considered in
this work: range queries, nearest neighbor queries, and spatial joins.

4.1 Range Queries
In a range query, all data items within a specific connected region
are retrieved. Typically, these connected regions have a shape fitting
to the indexing structure being used. Typical choices are disks, that
is, a range query is specifiedwith a location and a distance threshold,
and rectangles, that is, a range query retrieves all data within a
specific rectangle specified with the point of minimal coordinates
and the point of maximal coordinates of the rectangle.

4.2 kNN Queries
In a k nearest neighbor (kNN) query, a certain number of k spatial
objects are to be retrieved such that no spatial object is nearer to the
query location than these k objects. This query typically involves
enumerating a superset of the k nearest neighbors based on some
criteria using a spatial indexing structure and filter linearily to the
set of k nearest neighbors. It is worth noting that the kNN query can
be structured by finding k examples, for example, in the local data
at the primary node and then performing a refinement operation
essentially based on a range query to ensure that the local result is
globally correct or is being refined.

4.3 Spatial Joins
Conceptually, spatial joins are relating multiple larger datasets
according to either containment (similar to range queries) or neigh-
borship relations (similar to kNN). We will evaluate our system
with a global spatial nearest neighbor join assigning points to the
nearest building across the world. Similar to kNN queries, the usual
distributed spatial join implementations perform first a local op-
eration involving no cluster communication followed by a global
refinement. A detailed discussion of spatial joins in MapReduce has
been given by Sabek et al. [13].

5 REPLICATION STRATEGIES
With this paper, we want to discuss several replication strategies
based on the Z curve exploiting the observations of the internal
structure of the Z curve as explained in Section 2.2. More concretely,
in this paper, a data replication strategy is a model providing the
following functionalities:

• a function key mapping a spatial object into one or more
integer keys,
• a function endpoints calculating the replicating nodes given
the key, cluster size, and replication factor.
• a function circle calculating the set of keys originating
from the set of all points inside a circle.

We will use this replication strategy for both: assigning data to
nodes and assigning workload to nodes. In this way, we might face
challenges with respect to hotspots when the query and data distri-
butions are too different. Strategies for removing this assumptions

BigSpatial 2018, November 6, 2018, Seattle, WA, USA Martin Werner

0 5 10 15 20 25 30

0
5

10
15

20
25

30

X

Y

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

(a) Z-Curve 1

0 5 10 15 20 25 30

0
5

10
15

20
25

30
X

Y

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

(b) Z-Curve 2

0 5 10 15 20 25 30

0
5

10
15

20
25

30

X

Y

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

(c) Z-Curve 3

0 5 10 15 20 25 30

0
5

10
15

20
25

30

X

Y x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

(d) Z-Curve 4

0 5 10 15 20 25 30

0
5

10
15

20
25

30

X

Y x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

(e) Z-Curve 5

0 5 10 15 20 25 30

0
5

10
15

20
25

30

X

Y x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

(f) Z-Curve 6

0 5 10 15 20 25 30

0
5

10
15

20
25

30

X

Y

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

(g) Z-Curve 7

0 5 10 15 20 25 30

0
5

10
15

20
25

30

X

Y

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

(h) Inversion 1

0 5 10 15 20 25 30

0
5

10
15

20
25

30

X

Y

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

(i) Inversion 2

0 5 10 15 20 25 30

0
5

10
15

20
25

30

X

Y

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

(j) Inversion 3

0 5 10 15 20 25 30

0
5

10
15

20
25

30

X

Y

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

(k) Inversion 4

0 5 10 15 20 25 30

0
5

10
15

20
25

30

X

Y

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

(l) Inversion 5

0 5 10 15 20 25 30

0
5

10
15

20
25

30

X

Y x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

(m) Inversion 6

0 5 10 15 20 25 30

0
5

10
15

20
25

30

X

Y

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x

(n) Inversion 7

Figure 3: Data Distribution Example Using Two Replication Strategies Z Curve and Inversion

0 50 100 150 200 250

Index

D
is

ta
nc

e

Figure 4: Rotation Strategy

are an interesting direction for further research, but beyond the
scope of this paper.

5.1 Z-Curve Strategy
The most basic strategy modelled after Apache Cassandra is to use
a Z curve for assigning spatial data to a node. Therefore, we first
calculate the key in a chosen Z curve representation and assign the
object to the node along the ring that owns this key. Replication is
then performed along the ring wrapping over from the last node to
the first. In the sequel, this strategy is called zcurve.

Figure 3 depicts a sample distribution using the Z curve strategy
with 7 nodes. As you can see, the blocks follow a Z curve taking
always three steps at a time. This gives good data locality, but not

that much better than the original Z curve. The large jumps are for
four and five just in the interesting middle of the data space.

5.2 Rotated Z-Curve Strategy
Given that a Z curve enumerates space through a space-filling curve,
one simple approach to extending this to replication scenarios is
by rotation. We calculate the Z curve index and add a well-chosen
integer number to the key for each replica wrapping around the
key space via a modulo operation. From the analysis of the Z curve
in Table 1, we know that the number of long edges in the Z curve is
only a few. Figure 4,depicts the length of the edges of the Z curve
along the curve. Rotation can be used to move the large spike away
from the center of the key space. This amounts to rotating with
combinations of the maximal key value divided by a chosen power
of two, e.g., max_key/2,max_key/4, essentially moving the largest
spike as far as possible from the original curve in the key space. Note
that especially adding or subtracting an additional one keep this
effect largely same while also moving all of the very small spikes
towards the very small local minima. This leads to two strategies,
rotation in which we rotate always choosing to move the spike
as far away from the spikes of the other replica as possible, and a
strategy rotation+ in which we alternatingly add and subtract +1
from the keys.

We performed a global search using a replication factor of three
and eight nodes evaluating all possible rotations. For initial assess-
ment of data locality, we scan the key space using points sampled
from a uniform grid and count the number of neighboring cells that
are missing at the primary replica of this node. Interestingly, it re-
ports clear preferences: the minimum is achieved for configurations
in which the first replica is rotated by 248 or 249 and the second
replica between 384 and 499 in a space with 1024 cells. Though this
is only loose information on data locality concentrating on only
the directly neighboring cells, we derive the following additional
rotation strategy: we choose rotation factors of 0.242 · max_key
and 0.4311 ·max_key. The rationale of generalizing this to larger
numbers of cells is given by the recursive self-similarity of the Z
curve.

Spatial Data Locality in Scalable and
Fault-tolerant Distributed Spatial Computing Systems BigSpatial 2018, November 6, 2018, Seattle, WA, USA

(a) Refinements for Z Curve (b) Refinements for Inversion Strategy

(c) Refinements for Rotation Strategy (d) Refinements of the Heuristic Rotation

Figure 5: Refinement Need in Various Redundant Data Distribution Schemes

5.3 Binary Inversion Strategy
From the observations of the Z curve, we can conclude that long
edges occur if and only if many bits flip due to an increment after
mixing. That is, when the key value changes from, for example
7 : 0x0111b to 8 : 0x1000b, the cell coordinates change from (3/1) :
(0x11b/0x01b) to (0/2) : (0x00b/0x10b) with a Manhattan distance
of 4. We can use this to avoid flips of the curves of the replication
by binary inverting one of the coordinates. That is, a novel familiy
of replication keys is given by bitwise mixing (x ,y), (x̃ ,y) and
(x , ỹ), where x̃ denotes the binary inverse of the unsigned integer
representation of x . This replication can be extended to higher
degrees of replication by only inverting half of the bits, or a fourth
of the bits, and so on.

Figure 3 depicts the inversion strategy for seven nodes. As you
can see, we have good data locality when the underlying space is
actually wrapping around such as WGS84 spherical coordinates.

While many other strategies can be designed, we think that these
basic strategies stand out by observing that they do not need any
costly operations or any shared knowledge except the size of the
keyspace and the number of nodes in order to assign keys to nodes.

6 EVALUATION
In this section, we present the evaluation of the performance of the
system with respect to a global spatial join of tweets and buildings.

The building data consists of 8,482,569 buildings extracted from
OpenStreetMap. Each building is associated with its OSM ID, the
set of tags including street name, usage, address information, and
geometry given as a MULTIPOLYGON in well-known text format.
The overall building object is formatted as a single-line JSON object

and the dataset is composed of one JSON object per building. In
addition, we employ the BZIP2 compression algorithm. The file is
a 428 MB compressed file with an uncompressed footprint of more
than 2.6 TB.

The Twitter data is given as a set of Twitter API objects, which
are JSON objects with fields representing the tweet content, the
user, as well as metadata such as language and location. The dataset
has been collected from the public Twitter API and is stored as a
set of BZIP2-compressed files with one JSON object per line. Its
storage footprint is 359 GB which amounts to an uncompressed
footprint of 3 TB. It contains 824,295,091 valid tweet objects.

For visualization purposes, we also extract datasets containing
only 100,000 buildings randomly sampled from the large dataset
and about 160,000 tweet objects randomly sampled from the large
dataset.

6.1 Nearest Neighbor Join Workload
In order to get a good performance estimate of the various strategies,
we perform the followingworkload on the cluster:We join all tweets
with all buildings by a nearest neighbor left join. That is, the result
contains for each tweet the pair of the tweet object and the building
object of the nearest building.

Therefore, we perform the following distributed meta-algorithm:
• First, both datasets are distributed according to the same
strategy in the cluster.
• Each node now joins all the tweets where the node is a pri-
mary node with all buildings that are locally known includ-
ing those buildings that we only know from the replication
mechanism.

BigSpatial 2018, November 6, 2018, Seattle, WA, USA Martin Werner

• For each local result, the node calculates the keys of cells
that are not known locally, but possibly needed to refine the
result.
• This information is then used to greedily forward the data
object to the primary node of the first missing key.

Some comments on the meta-algorithm need to be given: First,
using the same distribution for both datasets might be suboptimal,
but as we concentrate on human aspects of buildings and social
media activity, we expect that these distributions are sufficiently
related. Exploiting more knowledge on the data distribution of both
datasets is promising, but left for future research. In addition, it
would not be easy to understand effects of data locality, when data
mobility during query execution is taken into account. The local
spatial join is implemented using an in-memory R*-tree containing
all locally-known buildings scanning over the primary tweets. This
has two implications: first, the number of nodes as well as their
main memory must be large enough to cope with indexing the
fraction of the building dataset and, second, the dataset of tweets
need not be sorted or indexed and can be of unbounded size. For the
given workload, this is a plausible decision as the number of tweets
grows much faster over time than the number of buildings and
though we have a significant amount of buildings in the dataset, it
is feasible to hold in memory even in systems with limited amount
of main memory per core. For the refinement step, we chose that the
primary node has to calculate the set of keys that are missing. We
could instead have calculated the set of nodes that this should visit.
However, this would limit envisioned extensions in which spare
nodes that are not affected by the workload will actively contribute
by observing statistics of cell misses. In addition, the refinement can
be seen as a difficult optimization problem. Instead of forwarding
to the first node that owns some missing data, we could actually
forward to the node which knows most of the missing cells or to a
node which knows a few of the cells, but has a low utilization. These
aspects, however, raise the general question on how to consistently
distribute metadata about the involved nodes (e.g., amount of data,
number of tasks, set of known cells) in a very large cluster and
go beyond the focus of this paper. In addition, this would directly
break compatibility of the algorithm with any HDFS-based big
data system in which at least eventual metadata consistency is
guaranteed by central components (for example, JobTracker and
NameNode in Apache Hadoop).

With the assumption that the data is distributed in the cluster
before the workload arrives, the performance is basically bound
to the refinement operations. The different strategies forward a
different number of objects, each with a different number of cells,
each time with a different minimum, average, and maximum dis-
tance to a missing cell and, in fact, it is impossible to find a single
best replication strategy. For example, we could identify a strategy
which forwards a lot of problems, which only involve a single sec-
ond node. This can be faster in practice compared to a strategy in
which forwards might hop around the cluster, thereby breaking
parallelization and amplifying work.

For the presented strategies evaluated on the smaller sample
datasets, Table 2 gives numbers related to various performance
parameters of the strategies to illustrate that there are actually dif-
ferent optimal strategies depending on the type of data and cluster

Cell Count Cell Distance
Strategy N Avg. Max. Avg. Max.
inversion 268 26.82 297 13.53 134.76
zcurve 293 24.41 425 14.32 208.06
rotation+1 338 24.46 425 14.59 208.06
rotation_heur 397 14.51 272 11.04 131.62
mixed 398 9.70 118 10.01 94.03
rotation 432 8.84 148 9.07 94.03

Table 2: Number and Distance of Missing Cells in a Spatial
Join of 180,000 tweets to 100,000 buildings with a Replica-
tion Factor of 3

performance metrics. As you can see by the boldly marked numbers,
different strategies excel in different parameters. In general, all the
approaches have very good data locality. This is to be expected
as the primary node is assigned via a Z curve in all cases leading
to very good general data locality even without data replication.
With data replication, we see that, for example, the binary inversion
strategy inverse is forwarding the overall fewest number of ob-
jects. When the limiting factor is cluster communication, then this
is the best strategy. However, the classical rotation strategy given
maximizing the distance of the largest spot forwards the highest
count of objects for refinement. Each of those has, however, only
a few cells missing. The strategy mixed, however, was providing
the solution in which the maximal count of missing cells in the
refinment step is minimal, that is the hardest refinement problem
is still significantly smaller than the other problems. From a plain
data locality perspective, we also look at the distance of the missing
cells. In general, these distances are difficult to use for a ranking
and are more of informational value: a large distance to a missing
cell can occur due to two reasons: we found only very bad examples
leading to a large range of cells for refinement or the only missing
cells are far away.

From a more general point of view, the table allows three con-
clusions:

(1) The classical Z curve construction with replication to the
neighboring nodes along the ring is quite powerful.

(2) The binary inversion strategy exceeds the classical construc-
tion in terms of minimizing the number of tasks that are to
be reshuffled across the cluster.

(3) All strategies are valid as they present different tradeoffs be-
tween various positive and negative effects whose severity
is tightly linked to the cluster architecture including inter-
connect speed, flexibility of task scheduling, etc.x

In practice, an evaluation with respect to each given actual query
workload is inevitable for an optimal operation. Still, we propose
to use the inversion strategy as a default.

6.2 Qualitative Evaluation
Figure 5 depicts the instances of nearest neighbor join that needed
to be forwarded to another node for refinement. We selected the
zcurve, inversion, rotation+, and rotation_heur strategies.
The rotaton strategy is quite similar to the rotation+ strategy. In
this Figure, a point is a tweet and a line denotes an assignment of a

Spatial Data Locality in Scalable and
Fault-tolerant Distributed Spatial Computing Systems BigSpatial 2018, November 6, 2018, Seattle, WA, USA

tweet to a building that needs to be refined, because the primary
endpoint responsible for the tweet was unable to guarantee that
this is actually a nearest neighbor.

In general, we can conclude that all strategies are working well,
because most tweets are solved without any refinement. In other
words, the best node-local example is the globally nearest neighbor.
However, a few long lines are given in each of those images. These
occur when a tweet was associated to a node that actually does not
know a building nearer to the tweet that the depicted line illustrates.
While it is counter-intuitive that such a thing happens, it is easily
explained: data locality is guaranteed only for the primary nodes
and some tweets end up in one worker responsible for the global
south-west cell. Now, the dataset does not contain any buildings in
this area. Therefore, only the replicated data objects that end up in
this rank can provide buildings at all. But, in this very case at the
bottom-left of the data space, the replica are actually coming from
far away for many strategies. Note that this behavior depends on
the number of nodes, too: while the Z curve strategy with powers of
two leads to a sort of block-wise assignment with some deviations,
other numbers lead to non-rectangular areas along the curve being
assigned, sometimes only connected through one of the long edges
thereby exploring two connected, compact, but distant areas inside
which data locality is given.

6.3 Time Evaluation
The presented algorithms have been carefully implemented in C++
using the MPICH3 MPI implementation. In this situation, the rank
is identified with the location in the ring. In this section, we report
times for a single PC (Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz,
eight cores) with some surprising results compared to the table
before. The quality of the implementation should not play a major
role in the reported time, but the overall structure (number of
vnodes, hard disk access, caching) does. We, therefore, applied each
method five times with disk caches being flushed each time leading
to the following findings for a nearest neighbor join on the sample
of 100,000 buildings and about 180,000 tweets:

The fastest strategy was actually the rotation+1 strategy with
an average join time of 3,188ms (sd=149.7ms). This might be related
to the fact that missing cells were quite far away and at the same
time the number of cells was only moderate. The inversion strat-
egy was runner up with slightly higher average wall clock time of
3,464ms (sd=199ms). An overview of performance values is given
in Figure 6.

This deviates clearly from expectations one might have drawn
from the data locality analysis. But, many other aspects including
the quality of the local spatial indices given the local data and the
number of refinements that are triggered in the greedy setting have
significant impact beyond plain data locality or refinement count.

6.4 Scalability
We perform experiments with an increasing number of tweets to
see the general scalability of the approach. For a dataset of one
million tweets, the numbers again show that the inversion strategy
has the least number of refinement steps. Only 11,755 tweets are
submitted for refinement in a cluster with eight worker nodes (each
one with eight cores). The second-best number is achieved by the

0
10

00
20

00
30

00
40

00
ro

ta
tio

n+
1

inv
er

sio
n

ro
ta

tio
n

ro
ta

tio
n_

he
ur

zc
ur

ve

m
ixe

d

Figure 6: Average wall clock time of joining the 180,000
tweets to 100,000 buildings

zcurve strategy with nearly 18,000 refinements, all others lead to re-
finement counts between 20,267 and 22,808 instances. Considering
wall-clock time, however, it turns out to be that the rotation strate-
gies are slightly faster (86.7s and 88.7s) than zcurve and inversion
(91.2s and 94.6s). Only the strategy mixed is significantly slower
with about 120s.

This is explained from the fact that the number of missing cells
for the rotation strategies are small (7.7 on average) while the
number of cells for the other strategies are larger (19.2 for zcurve
and 22.4 for inversion). With this medium-size dataset, we can
conclude that it depends a lot on the workload, which strategy to
choose: if the data comes from a very correlated distribution, then
you might want to have fewer missing cells and choose the rotation
strategies. If, however, the data is coming from different spatial
distributions, one might get longer distances in general and have
a better result from the inversion strategy, which is significantly
better in reducing the number of refinements, though not their
complexity. For the presented case of joining buildings and tweets,
one should take into account that most tweets originate in an urban
context and, therefore, most of the tweets are very near to a building.
This property leads to the fact that a strategy with expected lower
performance, because it fails on more instances, becomes faster in
practice.

7 CONCLUSION
With this paper, we studied several scalable replication schemata
for fast distributed processing of spatial operations. Ignoring the
minor variation in the rotation class, we proposed three strategies:
one based on the Z curve replicating to the next node along the

BigSpatial 2018, November 6, 2018, Seattle, WA, USA Martin Werner

ring, one based on the Z curve replicating to carefully chosen bi-
nary inversions of the coordinates, and one based on replication
through rotating along the Z curve. All three strategies provide data
locality, but most importantly, we have seen a tradeoff between the
number of refinements that are needed and the complexity of those
refinements.

While it is possible to get a very small number of incomplete
results by using the strategy based on careful coordinate bit in-
versions, this approach leads to a significant number of missing
cells and, possibly, to a longer wall clock time, because the missing
cells need to be located and scanned for refinement. On the other
hand, the rotation strategies have nearly twice as many incomplete
results, but for each of those, only a few cells are missing. Therefore,
the workload used in this paper shows better performance with the
rotation strategies.

In general, one should consider the workload and data distri-
butions in order to select an optimal strategy. As we have been
working on an MPI-based supercomputer with Infiniband intercon-
nect, the transmission of information inside the compute cluster
was significantly cheaper as compared to cloud computing, where a
usual network has to be used to transmit the refinements to another
node.

Consequently, we can conclude that the inversion strategy
should be used if the network or the task manager are under pres-
sure while with sufficient ressources and similar spatial distribu-
tions, the rotation strategy is preferrable.

For future work, we envision to address a few open questions:
first, of course, query skew. What happens to the data distribution
strategies, when queries become local. Think about having the same
datasets as presented here in the paper: a lot of tweets and a lot
of buildings. But assume, you are only interested in a single city.
In these cases, the nodes should learn to trade their tokens such
that the query can be distributed to more nodes than the set of
nodes that cover the query region. For example, a node that owns
only unrelated data to a query could load some of the cells over the
network and start augmenting the search.

This, however, raises an interesting and complex additional prob-
lem: when nodes start to trade tokens or to load additional data
in order to support a given query, then it is not generally known,
which node knows which data. Therefore, the submission of re-
finement jobs becomes difficult: given a single master, we could
of course track the spatial knowledge of each node and do some
assignments. Still, it is an NP hard optimization problem to find
an optimal schedule for which nodes should load which data in
order to answer which subqueries. And in general, of course, we
are interested in not having a central entity such as a master.

Therefore, we need to implement a gossip-like protocol in which
the nodes can exchange their spatial knowledge and, possibly, also
whether the data is available on disk or already in memory. We
envision to apply Bloom Aggregated Cell Representations (BACR)
for this in the future [16]. A BACR is a small, constant-size sketch
of a set of cells. In a supercomputer, we can exploit MPI All-to-
All communication as well as neighbor communication, in cloud
computing scenarios, we would need to research strategies of how
a query related to a certain set of cells reaches a good node for
processing.

And even without token trading and excessive usage of virtual
nodes, we face the problem of assigning a refinement task to work-
ers, which needs to be balanced given the complexity of the query
in relation to the worker (how many cells does he know, what
contribution does this computation bring) and the number of tasks
that are assigned to each and every node. We perform a greedy
refinement in this paper just assigning the primary node of the
first missing information, however, this will be suboptimal in some
cases.

Another direction of future research is given by asking, how the
block-based distribution schemes relate to replication and to come
up with strategies of increasing data locality through replication in
the case of assigning data based on an R-tree, for example.

REFERENCES
[1] Nabil R Adam, Basit Shafiq, and Robin Staffin. 2012. Spatial computing and social

media in the context of disaster management. IEEE Intelligent Systems 27, 6 (2012),
90–96.

[2] Ablimit Aji, FushengWang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang,
and Joel Saltz. 2013. Hadoop gis: a high performance spatial data warehousing
system over mapreduce. Proceedings of the VLDB Endowment 6, 11 (2013), 1009–
1020.

[3] Furqan Baig, Mudit Mehrotra, Hoang Vo, Fusheng Wang, Joel Saltz, and Tahsin
Kurc. 2015. SparkGIS: Efficient comparison and evaluation of algorithm results in
tissue image analysis studies. In Biomedical Data Management and Graph Online
Querying. Springer, 134–146.

[4] Ahmed Eldawy, Louai Alarabi, and Mohamed FMokbel. 2015. Spatial partitioning
techniques in SpatialHadoop. Proceedings of the VLDB Endowment 8, 12 (2015),
1602–1605.

[5] Ahmed Eldawy and Mohamed F Mokbel. 2015. Spatialhadoop: A mapreduce
framework for spatial data. In Data Engineering (ICDE), 2015 IEEE 31st Interna-
tional Conference on. IEEE, 1352–1363.

[6] Thomas Esch, Mattia Marconcini, Andreas Felbier, Achim Roth, Wieke Heldens,
Martin Huber, Max Schwinger, Hannes Taubenböck, Andreas Müller, and Ste-
fan Dech. 2013. Urban footprint processor—Fully automated processing chain
generating settlement masks from global data of the TanDEM-X mission. IEEE
Geoscience and Remote Sensing Letters 10, 6 (2013), 1617–1621.

[7] Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized struc-
tured storage system. ACM SIGOPS Operating Systems Review 44, 2 (2010), 35–40.

[8] Doug Laney. 2001. 3D data management: Controlling data volume, velocity and
variety. META Group Research Note 6, 70 (2001).

[9] Songnian Li, Suzana Dragicevic, Francesc Antón Castro, Monika Sester, Stephan
Winter, Arzu Coltekin, Christopher Pettit, Bin Jiang, James Haworth, Alfred Stein,
and Tao Cheng. 2016. Geospatial big data handling theory and methods: A review
and research challenges. ISPRS Journal of Photogrammetry and Remote Sensing
115 (2016), 119 – 133. https://doi.org/10.1016/j.isprsjprs.2015.10.012 Theme issue
’State-of-the-art in photogrammetry, remote sensing and spatial information
science’.

[10] Yu Liu, Zhengwei Sui, Chaogui Kang, and Yong Gao. 2014. Uncovering patterns
of inter-urban trip and spatial interaction from social media check-in data. PloS
one 9, 1 (2014), e86026.

[11] Stuart E Middleton, Lee Middleton, and Stefano Modafferi. 2014. Real-time crisis
mapping of natural disasters using social media. IEEE Intelligent Systems 29, 2
(2014), 9–17.

[12] Shoji Nishimura, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. 2011.
MD-HBase: A scalable multi-dimensional data infrastructure for location aware
services. In Mobile Data Management (MDM), 2011 12th IEEE International Con-
ference on, Vol. 1. IEEE, 7–16.

[13] Ibrahim Sabek and Mohamed F Mokbel. 2017. On Spatial Joins in MapReduce. In
Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems. ACM, 21.

[14] Shan Suthaharan. 2014. Big data classification: Problems and challenges in net-
work intrusion prediction with machine learning. ACM SIGMETRICS Performance
Evaluation Review 41, 4 (2014), 70–73.

[15] Waldo R Tobler. 1970. A computer movie simulating urban growth in the Detroit
region. Economic geography 46, sup1 (1970), 234–240.

[16] Martin Werner. 2015. BACR: Set Similarities with Lower Bounds and Application
to Spatial Trajectories. In 23rd ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems (ACM SIGSPATIAL 2015).

[17] Brandon Williams. 2012. Virtual nodes in Cassandra 1.2. (2012). available at
https://www.datastax.com/dev/blog/virtual-nodes-in-cassandra-1-2.

https://doi.org/10.1016/j.isprsjprs.2015.10.012
https://www.datastax.com/dev/blog/virtual-nodes-in-cassandra-1-2

	Abstract
	1 Introduction
	2 Related Work
	2.1 Big Data
	2.2 Geospatial Big Data

	3 Spatial Replication
	4 Queries in Systems with Spatial Data Locality
	4.1 Range Queries
	4.2 kNN Queries
	4.3 Spatial Joins

	5 Replication Strategies
	5.1 Z-Curve Strategy
	5.2 Rotated Z-Curve Strategy
	5.3 Binary Inversion Strategy

	6 Evaluation
	6.1 Nearest Neighbor Join Workload
	6.2 Qualitative Evaluation
	6.3 Time Evaluation
	6.4 Scalability

	7 Conclusion
	References

