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Abstract—Sensing accurately the number of occupants in the
rooms of a building enables many important applications for
smart building operation and energy management. A range
of sensor technologies has been studied and applied to the
problem. However, it is costly to achieve high accuracy by
instrumenting all rooms in a building with dedicated occu-
pant sensors. In this paper, we propose a new concept for
estimating accurate room-level counts of occupants. The idea
is to disaggregate accurate building-level counts via existing
common sensors available at the room level. This solution is
cost-effective as it scales to large buildings without requiring
dedicated sensors in each room. We propose an algorithm
named DCount that implements this concept. Our results doc-
ument that DCount can provide room-level counts with a low
normalized root mean squared error of 0.93. This is a major
improvement compared to a state-of-the-art algorithm using
common sensors and ventilation rate measurements resulting
in a normalized root mean squared error of 1.54 on the same
data set. Further more, we demonstrate how the results enable
occupant-driven analysis of plug-load consumption which is
one out of many applications using accurate room-level counts
of occupants we hope to enable by proposing DCount.

1. Introduction

Sensing accurately the number of occupants in the
rooms of a building has many applications within data-
driven mobile computing. Examples of applications include
smart spaces, safety and evacuation, facility management
and smart building operation. In terms of building operation
accurate people counts can enable applications, such as,
adaptive ventilation in rooms, occupant-based energy bench-
marking, and model-predictive control of room setpoints. In
all these applications the more accurately the number of
occupants can be sensed the safer or more energy-efficient
a building can become [1], [2].

A range of sensor technologies has been studied and
applied to the problem of using sensors to count occupants
[3]. These sensing systems have to balance tradeoffs among
accuracy, scalability, and cost. One line of work has studied
reusing commonly available building sensors for occupant
sensing. Studied sensor modalities include CO2 sensors, PIR

sensors, or WiFi access points [4]. However, often these
modalities alone only provide information with a high Root
Mean Squared Error (RMSE). For instance, Kjærgaard et
al. [5] report a RMSE of 21.7 for counting occupants using
PIR sensors in a small office building and [6] report an
accuracy around 50% for counting occupants in a large
hospital complex using WiFi access points. For CO2 sensors
existing work [7], [8] has shown that such sensors are often
too error-prone to use for occupant sensing. For instance,
Ebadat et al. [9] report only good results given a deep
integration with HVAC system components and extensive
calibration.

Another line of work has studied lightweight dedicated
people counting sensors for occupant counting in all areas
of a building. Beltran et al. [10] explore the idea of densely
deploying lightweight thermal sensors for occupant counting
in all areas of a building. Hnat et al. [11] explore the idea
of instrumenting door openings for count sensing. Another
option is based on computer vision technology including
monocular, stereo, and thermal cameras. These sensors are
quite accurate in the short term and long term stability can
be obtained by probabilistic modeling [12]. Installing such
sensors at a room level can be costly. For instance, the large
office building considered in this paper has a size of 8,000
m2, has eight external entrances and 136 rooms with 164
room entrances. The estimated installation cost for installing
dedicated 3D stereo-vision sensors is 328,000$ and room-
level vision sensors also raise privacy concerns.

A more cost efficient solution is to install the dedicated
3D stereo vision sensors that count occupants when passing
the perimeter of the building. Figure 1 gives an example
of such count data over eighteen days for the large office
building. However, this solution does not provide accurate
counts on a room level needed by the listed applications.

In this paper, we propose a new concept for estimat-
ing accurate room-level counts by disaggregating building-
level counts. The building-level counts are collected using
dedicated high precision people-counting sensors and then
disaggregated using less accurate common sensors at the
room level. In this paper we focus on 3D stereo-sensors
as dedicated people counting sensors. This solution is cost-
effective as it scales to large buildings without requiring
dedicated people counting sensors in each room. We propose
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Figure 1: Daily occupant counting profiles for eighteen days
in a large office building.

the algorithm DCount that implements this concept. Our
results document that this solution can provide room-level
counts with a high accuracy.

The main contributions of this paper are as follows:

• Propose a new concept for estimating accurate room-
level counts by disaggregating building-level counts
collected using dedicated high precision people-
counting sensors by less accurate common sensors
at the room level and other building information.

• Propose a probabilistic algorithm named DCount
for accurately disaggregating building-level occu-
pant counts into room-level counts. The algorithm
includes: 1) a method for estimating occupant proba-
bilities based on sensor measurements from common
sensor modalities; and 2) a method for disaggregat-
ing building-level counts to room-level counts based
on occupant probabilities.

• Provide extensive evaluation results for the accuracy
of the DCount algorithm based on data from a large
office building. Our results document that DCount
can provide room-level counts with a low normal-
ized RMSE of 0.93. This is an improvement com-
pared to a state-of-the-art algorithm using common
sensors and ventilation rate measurements resulting
in a normalized RMSE of 1.54 on the same data set.

• Present an application of using the room-level counts
produced by DCount for analysing room-level plug-
load consumption.

2. DCount: an Algorithm for Disaggregating
Building-level Counts

We propose the DCount algorithm to implement the
concept of estimating room level counts by disaggregat-
ing building-level counts. The DCount algorithm estimates
room-level counts based on the inputs and algorithmic steps
illustrated in Figure 2. By (X) we refer to the labels on the
figure. Three types of configuration inputs (A) is assumed
by DCount: 1) a count B for the building from accurate
dedicated people counting sensors that monitor the building
perimeter; 2) a list C of maximal room capacities, e.g., as
specified on a fire evacuation map; 3) optionally, a list A
of the spatial layouts of rooms represented by polygons.
Furthermore, the algorithm takes as input for each room
inaccurate measurements M measured by common sensors

for each time step (e.g., Boolean presence measurements
from PIR sensors or readings from CO2 sensors) (B). The
DCount algorithm estimates room counts based on a prob-
ability distribution where each element represent a spatial
area in a building, e.g., a distribution over a regular grid
of points spanning all floors in a building based on the
room layouts in A. The probability distribution might be
initialized with a uniform distribution or be derived from a
posterior distribution of a temporally preceding execution
of the algorithm (C). The algorithm follows a Bayesian
estimation approach to update the probability distribution
with the given inaccurate room-level measurements (D). To
produce room-level counts the algorithm runs a disaggre-
gation method that given the building-level count B, the
probability distribution and the room capacities C estimate
room-level counts R. Finally, the room-level estimates R
are provided as outputs of the algorithm.

3. Problem Formalisation

Given a building with n rooms, the goal of DCount
is to output a vector R of length n where element Ri is
the count estimate for the room number i. DCount can run
continuously outputting a reading every time step to produce
a time-series of room counts. The core idea of the algorithm
is to disaggregate a building-level count B using data from
inaccurate common sensors and building information. The
building-level count can among others be measured using
dedicated people counting sensors monitoring the perimeter
of the building. The counts can then be combined or even
better processed by an algorithm such as PLCount to remove
biases and apply error correction techniques [12]. We here
assume that B is available for every time step t where we
want to run DCount.

DCount takes several types of information into account
about the building. We formulate five versions of the al-
gorithm depending on the sensor data and amount of in-
formation available about a particular building. We explore
the five different versions to demonstrate that DCount can
work in different settings. For some buildings all the listed
information is available via information services for calendar
bookings or indoor map services (e.g. [13]). Else, these data
can be collected with a bit more effort manually either via
fire evacuation plans or building drawings. We consider the
following five versions in this paper:

DCount-S: uses data from common sensors for the
rooms in R. The part of a building that is not part of R,
e.g., hallways are modeled as a single area named “common
area”.

DCount-SA: assumes that in addition to the sensor data
for each room we also have information about the spatial
layout of rooms. In particular that a vector A of room layout
polygons where Ai is the polygon representing the layout of
room i. The polygon is represented in a common Cartesian
coordinate system for the whole building including infor-
mation of the floor level the polygon is placed on. This
information enables DCount-SA to take the size of the room
into account. This is based on an assumption that larger
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Figure 2: Overview of inputs, algorithmic steps, and outputs of the DCount algorithm.

rooms will often have a higher number of occupants than
smaller ones.

DCount-C, DCount-SC and DCount-SAC: assume the
availability of a vector C of maximum room capacities of
occupants where Ci is the maximum capacity of room i.
The capacity can among others be used by the algorithm
as an upper limit on occupation. The room capacity is
often available either via fire evacuation plans or building
drawings. For common areas we put the capacity at a lower
limit than what is allowed for fire safety. This is to reflect
that prolonged occupation of these areas are uncommon as
they are only used as people move through the building.
DCount-C only uses capacities and is included as a reference
for the other methods. DCount-SC combines sensor data
and capacity information and DCount-SAC combines sensor
data, spatial layout information and capacity information.

3.1. Measurements

When DCount uses common sensor data it takes as input
any sensor measurements available at the room level. The
sensor measurements might be CO2 or PIR measurements.
However, other measurements could also be used, such
as, door openings, power consumption or wireless network
usage. Let M be a vector of length n where each entry Mi

is a list of measurements available for room i. The list of
measurements contains tuples of T x v where T is the type
of measurement and v is the value of the reading. As the
sample times and frequencies might differ among sensors we
assume that M contains the most recent reading from any
sensor. There might be rooms in a building with no sensors,
however, based on our own observations these are often
rooms not designed for prolonged occupation, e.g., storage,
technical or cleaning facility rooms. The algorithm takes
such rooms into account but does not update occupation
probabilities based on any measurements.

3.2. Initialization

As the basis for DCount we have chosen to apply a
Bayesian estimator. The goal for DCount is an algorithm

that works without training data from the sensors of the
particular building in target. Therefore, this goal constraints
us from applying learning-based algorithms. Bayesian esti-
mation is a well-known and robust framework. The Bayesian
estimator uses general models to avoid being dependent on
training data. To scale the algorithm to very large building
complexes, particle filters might be an option to consider to
avoid the state space explosion with a Bayesian estimator.
However, in this paper we presents results for a 8000 m2

building where the algorithm runs instantly and, therefore,
we leave particle filters as a possible future extension.

For modeling the estimation problem we define π as a
probability vector over the space of the building in question.
For DCount-S, DCount-C and DCount-SC the length of
π matches the number of rooms and each entry πi is the
probability for occupation in room i. For DCount-SA and
DCount-SAC we use the spatial layout for each room to
generate an equal distanced grid of points over all rooms.
A separate grid is generated for each floor in the building.
Thereby, each entry πi is the probability of occupation for
the grid point number i. Figure 3 visualises such a grid on
the case building for all three floors. The grid is constructed
with a point-to-point distance of approx. 2.5m in north-south
directions and approx. 1.25m in east-west directions. This
sizing result in 2,247 gridpoints in total and at least one
gridpoint per room. Using a finer grid will result in longer
run times of the algorithm but will not increase accuracy as
the measurements of each common sensor is used to update
all points in a room. This grid is also used in the presented
results.

Before each run of the algorithm we initialize π using
an uniform distribution. We have also tested the option of
using the occupant probabilities from the preceding time
step to initialize π with. However, this option did not lead
to improved performance. The main reason being that each
CO2 reading in a room is not independent of the last reading.
Therefore, over time the occupation probabilities quickly
accumulates in a few rooms resulting in highly erroneous
estimates. DCount-C only initializes π and skips the sensor
update step.



Figure 3: Gridpoints over three floors colored by estimated
disaggregated counts including placement of stereo vision
people counters.

3.3. Sensor Updates

Using Bayesian estimation we update the probability
vector π with sensor measurements M for each time step.
Assuming that the sensor measurements for each room are
independent we update using:

−→π ′i =
P (Mi|i) ∗ −→π i

η
(1)

where

η =

n∑
i=1

P (Mi|i) ∗ −→π i (2)

The parameter η is a normalizer to make sure that π is
a valid probability vector.

The occupation probability for each measurement
P (Mi|i) is calculated by the following model. The model
at present incorporate the sensor modalities CO2 and PIR
but can be extended to include other sensor modalities as
relevant. The motivation behind the model is that CO2

and PIR measurements are inaccurate proxies for occu-
pation. In particular CO2 sensors are inaccurate because
of the following reasons: Firstly, if ventilation is present
CO2 will only increase until a set-point for ventilation is
reached, however, in most buildings the set-point is the same
through out the building. This means that equal likelihood
for occupation can be assigned to different rooms in a
building based on CO2. Secondly, CO2 is reacting slowly
to changes in occupation. Thirdly, opening and closing of
windows and doors will lower the CO2 content compared
to the occupation level. Given these error sources we have
designed a probability model that include CO2 as a relative
indication of occupation for disaggregating counts and PIR
as a Boolean indication of occupation. DCount has the
advantage that by combining CO2 with building-level counts

it can upscale small changes in CO2 which might address
the slow reaction in the measurements.

The model is defined as follows:

P (Mi|i) =
Z(Mi) + β

λ
(3)

where β is a balancing constant, Z(Mi) is the occupa-
tion factor given the sensor readings, and λ is a normaliza-
tion factor. The role of β is to keep the probabilities above
a certain threshold so a room or gridpoint never becomes
extremely unlikely which will limit the system in reacting to
changes in number of occupants. In our experimental results
we used a value for β of 0.1.

The CO2 readings in M are preprocessed from absolute
readings to relative CO2 readings by subtracting the natural
CO2 level. The natural CO2 level is estimated as the mini-
mum CO2 level that a sensor has recorded in the preceding
fourteen days. If Mi contains a relative CO2 reading (vCO2)
and a PIR reading (vPIR) then

Z(Mi) =

{
vCO2

if vPIR is true
0 if vPIR is false

if Mi only contains a CO2 reading then Z(Mi) = vCO2 .
If Mi only contains a PIR reading we put Z(Mi) = 100
to represent the ppm increase of CO2 in a lightly occupied
room compared to the natural CO2 level. The argumentation
is that CO2 sensors are most often present in highly occupied
rooms where as PIR sensors are used in less occupied rooms.
The parameter λ is defined as follows:

λ =

vmaxCO2∑
j=1

j (4)

Here vmaxCO2
is the maximum among all CO2 mea-

surements in M for each time step. Thereby, the factors are
relative to the room with the highest CO2 concentration.
Figure 4 shows the probabilities P (Mi|i) for different CO2

readings over a day as vmaxCO2
changes.

3.4. Disaggregation

The disaggregation is performed to compute a vector
R of room counts from the occupation probabilities π and
the building-level count B. In the following we will focus
on the disaggregation algorithm for DCount-C, DCount-SC
and DCount-SAC, however, DCount-S and DCount-SA are
similar except for not applying the room capacity to balance
probabilities and limiting room counts based on the room’s
maximum capacity. The pseudocode in Algorithm 1 lists the
steps of the disaggregation algorithm. The algorithm first
sums probabilities at a room level. To balance probabilities
in regards to the capacity of the rooms, we multiply with
the room capacities and normalize the probabilities. The
assignment procedure assigns counts starting with the room
with the highest probability for occupation. The reason for
this is that we would rather assign a person counted to a
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Figure 4: Occupation probabilities P (Mi|i) for relative CO2

readings with vmaxCO2
changing at different times a day.

room with a high probability than spread them out in rooms
with a low probability. The algorithm then continues until
all counts have been assigned to rooms.

Algorithm 1: Capacity-based disaggregation algo-
rithm

Data: Probability vector π and building-level count
B

Result: Disaggregated room counts R
Fill a vector Π with an entry for each room by
summing π entries for each room;

Multiply each Πi with the room capacity Ci and
normalize;

Initialize A := 0;
while A less than B do

Select room Ri with the highest probability Πi;
Calculate the percentage s of Πi out of the sum

of Π;
Assign the share s of B −A to Ri;
Πi := Πi modulo s;
if Ri more than Ci then

Ri := Ci;
end
A := A + Ri;

end

4. Implementation

The DCount algorithm has been implemented in Python
for our evaluation study. The DCount algorithm uses the
pandas framework for processing time series data. The
PLCount algorithm was implemented in Python and used to
clean count data [12]. All sensor data queries and storage
of time-series sensor data is handled using the sMAP [14]
software platform.

To evaluate the DCount algorithm sensor measurements,
and building information data were obtained from a large
office building. The large office building is a 8,000 m2

building, it records an average of 1,000 occupants on normal
weekdays and it facilitates several types of staff and student
activities. Room types in this building comprises mainly of
offices, classrooms, and study areas. Eight PC2 3D stereo-
vision cameras from the company Xovis are installed along
the perimeter of the building to cover the transitions through
the entrances and exits of the building. This includes six
ground-level entries and two walkways connecting the build-
ing to neighboring buildings. Measurements are collected
from KNX connected PIR and CO2 sensors in 81 and 89
rooms, respectively. The eight rooms without PIR sensor
data are parts of hallways. The measurements are collected
per minute on the sMAP software platform for building
data [14]. The 47 rooms in the building without any sensor
data consists of technical rooms, hallway areas, and storage
rooms. For the evaluation we use a dataset spanning 30 days
from September to October 2016 which are busy months in
the building. This dataset contains 345,600 people counts,
3,499,200 PIR readings and 3,844,000 CO2 readings. Room
capacities were extracted from building plans for the 136
rooms. The room layouts are available as open data from
an indoor map service API provided by [13]. The API pro-
vides the room layouts as polygons represented in geojson
including floor information.

5. Results

This section presents accuracy evaluation results for ap-
plying the disaggregation concept and the DCount algorithm
in particular. The results cover an evaluation with room-
based ground-truth data for four rooms and visual inspection
of results for a larger set of rooms in the building.

5.1. Evaluation Setup

To quantify and compare the accuracy of the algorithms
we use the Normalized Root Mean Squared Error (NRMSE).
We favor the use of NRMSE over RMSE because RMSE
can only be interpreted with a prior knowledge of the
duration and the particular occupant-level of each room. In
the following results we compute NRMSE for each day and
each room normalized by the average number of occupants
computed via ground truth data. This respects the changes
in occupant-levels on different weekdays and in different
rooms and at the same time normalize the values by the
occupant-level so they are comparable.

The room-based ground-truth evaluation is based on
ground-truth data for four rooms where two are regular
teaching rooms and two are student zones with mixed use for
student activities, such as, project work or solving exercises.
The ground truth is collected by eight highly accurate PC2
3D stereo vision cameras from the company Xovis mounted
over the two room entrances to each of the four rooms. The
implementation of the PLCount algorithm was used to clean
the data. Previous results with this type of sensor and the



PLCount algorithm has demonstrated an accuracy of 0.075
RMSE compared to a manual ground truth [12]. Therefore,
the accuracy of this setup is several times more accurate
than DCount and can therefore be used as ground truth to
evaluate the accuracy of DCount.

We evaluate the five different variants of the DCount al-
gorithm using different amounts of sensor data and building
information: DCount-C, DCount-S, DCount-SC, DCount-
SA, and DCount-SAC and for different combinations of
measurements from common sensors: CO2+PIR, CO2 and
PIR.

To highlight the improvements of using the disaggre-
gation concept for room-level count estimation and the
implementation in DCount we compare to a state-of-the-
art algorithm based on common sensors and ventilation
rate measurements named Ref-HVAC. The contribution of
this paper is the idea to combine building-level counts and
common sensors to estimate room counts and the imple-
mentation of this idea with DCount. Therefore, we do not
in the following compare to rudimentary approaches that
use the building-level counts or common sensor values as
these have much worse accuracies. For instance, we tested
an algorithm combining PIR and room capacities which had
an NRMSE of above 3.5 on our dataset.

Ref-HVAC is a state-of-the-art method for estimating
occupants using common CO2 sensors and ventilation rate
measurements similar to Gruber et al. [8]. Compared to
DCount this method requires integration with the BMS to
access ventilation rate measurements and it also requires
calibration of a number of method parameters. The method
is based on step-wise error minimization in the following
transient balance equation:

Vr
dcr
dt

=
pV̇cp + (V̇ve +NinfVr)(cn − cr)

3600
, (5)

where Vr [m3] is the room volume, cr is the room CO2 con-
centration [ppm], p is the number of occupants (estimated),
V̇cp is the CO2 generation per person [m3 per hour], V̇ve is
the ventilation airflow [m3 per hour], Ninf is the infiltration
airflow expressed in air changes per hour [h−1], cn is the
neutral CO2 level [ppm] and t is time [s]. Since the CO2

concentration is very low, it is assumed that it does not affect
the air mass balance. Hence, Eq. (5) is formulated using
volumetric quantities. This assumption has been tested by
Gruber et al. [8]. The ventilation rate is calculated from the
VAV box damper position which is measured by the BMS.
The infiltration rate Ninf and CO2 generation per person
V̇cp depend on the building type and occupant activity level.
In this evaluation the parameters were tuned based on 24
hours ground-truth occupant numbers (survey) for one of the
rooms. Finally, Ninf = 0.33 and V̇cp = 0.04 were assumed.
The model is implemented in Python and Brent’s method
from the SciPy package is used for error minimization.

5.2. Groundtruth-based Accuracy

Figure 5 plots NRMSE results for the five variants of
the DCount algorithm and the reference algorithm by their
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Figure 5: DCount NRMSE results as a CDF over individual
days with both CO2 and PIR measurements.

Cumulative Distribution Function (CDF). The results are
computed using both CO2 and PIR measurements. From
the figure we can observe that the different formulations of
the DCount algorithm provide a comparable performance.
However, DCount-SC has the best overall performance and
DCount-C and DCount-SA the worst as they in several cases
produces a NRMSE above 2.5. The NRMSE of Ref-HVAC
is consistently worse providing evidence for the benefits of
DCount.

To evaluate the individual sensor modalities’ contribu-
tion to accuracy, Figure 6 and 7 show results with only CO2

and PIR measurements, respectively. The results for CO2

show the same picture as with both measurement types with
DCount-SC as the best performer. The results for PIR is sub-
stantially worse than combined with CO2 in particular there
is a higher level of large errors. This is also supported by
that DCount-C which does not use the sensor measurements
has the best performance. Overall the DCount algorithm is
still better than Ref-HVAC. These statements are confirmed
by Figure 8 which directly compare the performance of
DCount-SC with different sensor combinations.
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Figure 6: DCount NRMSE results as a CDF over individual
days with CO2 measurements.

To consider the impact of the types of room we have
studied the individual results for classrooms and study
zones. The classrooms have the highest occupation with a
maximum of 84 people and the study zones have a lower
maximum occupation of 32. The median of the NRMSE for
DCount-SC with CO2+PIR in the two classrooms are 0.6
and 0.83, and in the study zones 0.85 and 0.94. In all rooms
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Figure 7: DCount NRMSE results as a CDF over individual
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Figure 8: DCount-SC NRMSE results as a CDF over indi-
vidual days for different sensors.

this is an improvement over Ref-HVAC with medians for the
NRMSE of 1.56 and 1.1 in the classrooms, and 1.41 and
1.44 in the study zones, respectively.

5.3. Visual Analysis

To evaluate the results from all the rooms we are limited
to apply visual inspection as it is infeasible to collect
ground-truth data in all rooms of the building. However, it
is still relevant to check the correctness of the estimates for
the rest of the rooms in terms of overall expected patterns.
To visually inspect the correctness of the estimates we have
visualised the results for rooms designed for occupation of
more than six persons. The reason we leave out individual
offices is to protect the privacy of individuals. Figure 9
shows the estimates over a week in the middle of September
with the four rooms analysed with ground-truth data high-
lighted with brackets. The two subplots show the estimates
for DCount-SC and DCount-C, respectively. What we hope
to observe is that patterns we expect to find is reflected in
the data. In terms of expected occupant patterns both staff
and students have access to the building 24/7. Classes are
scheduled primarily between 8-16 on weekdays. If we focus
on DCount-SC, firstly, we can observe the difference be-
tween day and night, and weekdays and weekend. Secondly,
we can observe the high occupation in the classrooms as
they are designed for. For study zones we can observe less
structured start and end times than in the scheduled class
rooms. We can also notice that students use the building

in weekends. We expect that the occupation outliers in the
evening, night and morning can be attributed to cleaning,
technical and security staff visiting the rooms outside normal
office hours. Therefore, the data for DCount-SC based on
a visual inspection provides the patterns we would expect.
DCount-C which does not use any room-level sensor data
provides a median accuracy of 1.12 in the presented results
but with the highest deviation. However, from the visual
inspection we can notify that the produced estimates are
unusable in practice as all rooms of similar sizes get the
same counts. This might be a good estimate on average,
however, this does not enable applications such as adaptive
ventilation control. The issue is that the adaptive system
can only save power for ventilation when the system can
detect that it can go into a low power consuming operation.
Therefore, DCount-SC provides much better estimates for
this application than the difference in accuracy indicates.

6. Occupancy-driven Energy Analysis

Given the positive results we in this section illustrate
the use of the DCount produced room-level counts. This
is just one of the many use cases for room-level occupant
counts. The case we consider is occupant-driven energy
consumption analysis. The case is motivated by a wish of
the technical staff in the large office building to analyse the
consumption of students’ plug-loads. In the building a rich
metering infrastructure is installed among others electricity
metering of plug-loads on a room-level. In total the building
consumed 18,397 kWh in September 2016 where 27%
is plug-loads, 23% is ventilation, 15% is room lightning,
12% is lighting for decoration plants, and the remaining is
split among networking equipment, elevators and pumps.
DCount enables an analysis of these meter readings versus
occupants. It is here important that the occupant data is
as accurate as possible as else the technical staff will not
trust the analysis. Figure 10 plots an example from this
analysis. The figure shows the relation between daily plug-
load consumption and total daily occupation time for two
different room types. The total occupation time is computed
from the DCount room-level estimates by summing over a
day the total occupation of each room for each time step.
From the two figures one can observe a great variation in
consumption and occupation for each day. The variation has
the greatest variation for the study zones. This might be
due to a greater variation in consumption between solving
exercises on paper and collaborative work with laptops and
other equipment. For the class rooms, we also observe a
large variation, but for days with prolonged occupation, we
see a clear increase in consumption. Looking at the general
trends of consumption versus occupation, it is approximately
12 Wh per occupation hour in the class rooms and 24 Wh
per occupation hour in the study zones. However, with a
substantial variation for any particular day. These numbers
might look small but with hundreds of students in the build-
ing they sum up. The sum is actually a large percentage of
the overall consumption of the building as all other systems
in the building have been designed to be extremely energy



(a) DCount-SC

(b) DCount-C

Figure 9: Estimated counts over seven days for rooms designed for occupation of more than 6 persons.

efficient. This analysis is an important input to designing,
for instance, nudging campaigns for powering off unused
laptops with the screen on and doing energy budgets based
on knowledge of student behavior as numbers grows and
drops over the years. This case illustrates how the counts
produced by DCount can be applied to analyse electricity
consumption over a wide range of rooms which is one out
of many applications of room-level count data [1], [2].

7. Related Work

Many sensing modalities have been considered for
counting room occupants. A commonly used sensor for
controlling ventilation rates is a CO2 sensor. Several studies
have considered sensing occupants using CO2 sensors [7],
[8], potentially, in combination with other sensors [15]. An
obvious challenge for utilizing CO2 sensors is the long
response time resulting in detection delays. Fisk et. al. in [7]
analyse the accuracy of CO2 based occupant counts using
44 CO2 sensors deployed in nine commercial buildings. The
study concludes that the sensors are very prone to failures
and calibration errors. Only a deep integration with the
HVAC system (which is rarely possible) combined with door
and window sensors enables a highly accurate system using
these sensors [9].

Another occupant detection method is Wi-Fi measure-
ments [4], [6], [16], [17]. Christensen et. al. identified a par-
tial correlation between Wi-Fi enabled devices connected to
existing network infrastructure and electricity consumption
in commercial buildings. They concluded from these results

that connected devices can be a fair metric for estimating oc-
cupants in a building. Schauer et. al. [16] proposed a method
based on Wi-Fi management frames in which typical de-
vices (smartphones, laptops) without additional software can
reliably be detected. Ruiz et. al. extracted spatio-temporal
features from similar measurements of Wi-Fi management
frames in order to determine occupants density and flow, and
to classify behavioral roles within an hospital building. A
challenge with these methods is that occupants are required
to carry personal devices. Kleiminger et al. [17] explored
using similar data in a residential setting. Similar challenges
could be noticed in [18] which utilizes Bluetooth beacons
for occupant detection in buildings. The system proposed
in [18] requires active connection to installed Bluetooth
beacons and all gathered location data from monitored
devices are sent to a server for additional processing. The
accuracy recorded was only based on connected devices not
on ground-truth occupant counts of people in the detected
location. Kjærgaard et. al. [5], compared count data obtained
from PIR sensors in a building with ground-truth data. The
results highlight that PIR sensors are not fit for occupant
counting because of a RMSE of 21.7. Thermal cameras and
3D counting cameras [12] can both provide highly accurate
counts but are costly to install in many rooms.

Another line of work has studied lightweight dedicated
people counting sensors for occupant counting in all areas
of a building. Beltran et al. [10] explore the idea of densely
deploying lightweight thermal sensors for occupant counting
in all areas of a building. Hnat et al. [11] explore the idea
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Figure 10: Relationship between time spent in rooms by occupants and plug-load consumption per day.

TABLE 1: Comparison of cost and accuracy properties of different solutions.

Solution Cost of Installation Cost of Configuration Limitations Accuracy (NRMSE)
Dedicated 3D stereo vision sensors Very High High Privacy <0.1
Ref-HVAC [8] Medium High Integration with BMS 1.54
DCount-C Medium Low 1.12
DCount-S (CO2+PIR) Medium Low 1.08
DCount-SAC (CO2+PIR) Medium Medium 0.97
DCount-SA (CO2+PIR) Medium Medium 0.97
DCount-SC (CO2+PIR) Medium Low 0.93

of instrumenting door openings for count sensing. Yang
et al. [19] consider densely installing LED sensing for
counting occupants. As we argue in this paper a more cost
efficient solution for large buildings is to install dedicated
high precision people-counting sensors that count occupants
when passing the perimeter of the building and then utilize
existing common sensors to disaggregate the counts to a
room-level. The results in this paper document that this
concept implemented via the DCount algorithm achieves
high accuracy and is a substantial improvement over using
the Ref-HVAC algorithm based on common sensor and
ventilation rate maesurements.

8. Discussion

The results of the paper document the accuracy of the
five versions of DCount for sensing room-level occupant
counts. Table 1 compares the properties of the five ver-
sions with the state-of-the-art HVAC sensor based solution
and room-level monitoring with dedicated 3D stereo-vision
sensors. The table covers the properties: cost of installa-
tion including equipment purchase, cost of configuration
including any parameterisation and training data collection,
limitations of the approach and accuracy. A solution with

dedicated 3D stereo vision sensors at the room-level has
a very high cost of installation (e.g. 328,000$ for the large
office building) and a high configuration cost for configuring
several parameters including counting lines, has limitation
in terms of privacy implications but also provides a very
high accuracy. Using Ref-HVAC has a medium cost of
installation to collect both CO2 and ventilation rate mea-
surements, high cost of installation to collect calibration data
and parameterize the method for each room and result in
a poor accuracy. Furthermore, some BMSs do not provide
APIs to collect ventilation rate measurements. The different
versions of DCount have a medium cost of installation as
dedicated 3D stereo-vision sensors have to be installed to
collect building counts along the perimeter (e.g. 16,000$
for the large office building). The cost of configuration is
either medium or low depending on if the spatial layouts
are used or not, respectively. The best performing version of
DCount following our results is DCount-SC with CO2+PIR
data which also has a low cost of configuration. However,
the PIR data only provide a minor improvement compared
to only using CO2 data.

The results of the paper document DCount as a cost-
efficient occupant sensing method with a low NRMSE.
These results were produced with one specific combination



of dedicated people counting sensors (3D stereo vision
cameras) and common sensors (CO2 and PIR). However,
other dedicated and common sensors could be applied with
the DCount algorithm, e.g., the ones mentioned in related
work. In our future work we plan to explore the combination
of other sensor modalities of dedicated and common sensors
to evaluate the combinations in terms of accuracy, scalability
and cost.

In this work, ground-truth data was collected in two
types of rooms. However, the results document that the
observed accuracy depends to some degree on the occupant
patterns of the rooms. Therefore, it could be relevant in
future work to evaluate DCount with data from other room
types, e.g., as found in public, retail or industrial buildings.

In this paper, we considered maximum room capacities
as well as the spatial layout of rooms as inputs to the
algorithm. However, there might be opportunities for further
improving the accuracy of the algorithm by additional inputs
and modeling elements. An example of an input could be
scheduled activities in rooms. However, we are hesitating to
follow this direction as often occupant sensing systems are
used to quantify deviations from schedules. Using sched-
ules would also require an additional integration with the
calendar system of all organizations occupying a building.
In terms of modeling an opportunity might be to model
the movement of occupants among rooms and gridpoints.
This would require additional information about the con-
nectivity of the rooms but might further improve accuracy.
Another aspect is to consider the privacy of occupants via
anonymization methods [20].

9. Conclusion

In this paper, we considered how to sense accurately the
number of occupants in each room of a building. Counts
at the room-level enables many important smart building
applications. We proposed a new concept for estimating
room-level counts by disaggregate building-level counts
collected using dedicated high precision people-counting
sensors via common sensors at the room level. The solu-
tion is cost-effective as it scales to large buildings without
requiring dedicated people counting sensors in each room.
We implemented the concept with the algorithm DCount
and tested five different versions of the algorithm. Our
results document that DCount and in particular DCount-
SC can provide room-level counts with a low NRMSE of
0.93 which is lower than a state-of-the-art algorithm using
common sensors and ventilation rate measurements demon-
strating a NRMSE of 1.54. Furthermore, we demonstrated
how the results enable occupant-driven analysis of plug-load
consumption which is one out of many applications using
accurate room counts that we enable by proposing DCount.
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