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ABSTRACT:

In this work, we consider the exploitation of social media data in the context of Remote Sensing and Spatial Information Sciences.
To this end, we explore a way of augmenting and integrating information represented by geo-located feature vectors into a system
for the classification of satellite images. For that purpose, we present a quite general data fusion framework based on Convolutional
Neural Network (CNN) and an initial examination of our approach on features from geo-located social media postings on the Twitter
and Sentinel images. For this examination, we selected six simple Twitter features derived from the metadata, which we believe could
contain information for the spatial context. We present initial experiments using geotagged Twitter data from Washington DC and
Sentinel images showing this area. The goal of classification is to determine local climate zones (LCZ). First, we test whether our
selected feature maps are not correlated with the LCZ classification at the geo-tag position. We apply a simple boost tree classifier
on this data. The result turns out not to be a mere random classifier. Therefore, this data can be correlated with LCZ. To show the
improvement by our method, we compare classification with and without the Twitter feature maps. In our experiments, we apply a
standard pixel-based CNN classification of the Sentinel data and use it as a baseline model. After that, we expand the input augmenting
additional Twitter feature maps within the CNN and assess the contribution of these additional features to the overall F1-score of the
classification, which we determine from spatial cross-validation.

1. INTRODUCTION

Humans are very powerful sensors, capable of not only perceiv-
ing the world, but interpreting it as well. Social media give us
the opportunity to access information gathered by humans and
thus can be seen as an interface to access this powerful sensor.
The usage of this implicit, user generated data can reduce the de-
mand for explicit data, which has to be gathered with additional
overhead and costs. One of the scenarios where user generated
data could help, is the development of land use and land cover
classification models.

The classification of land use and land cover has been an impor-
tant research topic in remote sensing for a couple of decades (An-
derson, 1976), (Foody, 2002). Recently, a world-wide data set
with a resolution of 30m has been created ((Chen et al., 2015)).
In the last decades, fine-grained classification of urban regions
has shown great potential in understanding urban dynamics. To
this end, Oke et al. proposed the local climate zones classification
scheme which has seen wide adoption (Stewart and Oke, 2012),
(Stewart et al., 2014). In this scheme, 17 classes have been de-
fined that jointly cover surface structure (height and density) and
surface cover (pervious or impervious). The most amount of pub-
licly available LCZ data is provided by the World Urban Database
and Access Portal Tools (WUDAPT). This organization provides
rastered LCZ data for a couple of cities around the world. Ground
truth for local climate zone classification has been acquired by
individuals for a few cities in the WUDAPT project (Mills et al.,
2015). Many efforts have been taken to predict LCZ classes from

various remote sensing sources (Yokoya et al., 2018) (Bechtel
and Daneke, 2012)(Bechtel et al., 2015) most notably including
the last edition of the IEEE GRSS Data Fusion Contest in 2017.

Social media as novel modality is quite orthogonal to usual re-
mote sensing data: it is very sparse, it is local, it is mostly gen-
erated by humans thereby exploiting human knowledge, but it
is noisy. While the text content of tweets is difficult to relate
to rather morphological LCZ classification, it can still provide
hints on how to distinguish different classes that look similar
from space. In this paper, however, we focus on aggregated tweet
metadata including the number of tweets and the type of users.
We aggregate this metadata on a coregistered grid with down-
sampled Sentinel imagery. In this work we first show that Twitter
data contains implicit information about land use and land cover
(Experiment 1) and that this data improves the LCZ classifica-
tion with a baseline Convolutional Neural Network (CNN) based
on satellite imagery (Experiment 2). Note that our experimental
setup is considered not to provide the best possible classification
performance as this always comes at the risk of high overfitting
and overly targeted models. Instead, a simple baseline classifi-
cation system is analyzed with respect to its behavior with and
without Twitter data on the classification quality.

The remainder of this paper is structured as follows: In chapter 2
we give a brief overview on the background of this work includ-
ing the LCZ system, CNNs for different image related tasks and
Twitter data. We continue in chapter 3 with a more detailed de-
scription of the dataset we created and used. In chapter 4 we de-
scribe our methodological approach. In the subsequent two chap-
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ters 5 and 6 we focus on the experiments including our evaluation
strategy. The results of the experiments are presented in chapter
7, followed by a discussion in chapter 8. In the last chapter we
conclude our work and give a brief outlook regarding possible
future work.

2. BACKGROUND

Local climate zones are a land use / land cover classification sys-
tem currently receiving high attention within the GI community.
It has a focus on the built environment, which leads to its capa-
bility to improve climatic modeling (Stewart and Oke, 2012) and
to provide a generalized and therefore comparable representation
of urban architectural topographies (Taubenböck et al., 2012).

Built types Definition
1. Compact high-rise Dense mix of tall buildings to tens of

stories. Few or no trees. Land cover
mostly paved. Concrete, steel, stone,
and glass construction materials.

2. Compact mid-rise High density of massive buildings
with height 10 m to 25 m.

3. Compact low-rise Dense mix of midrise buildings (3–9
stories). Few or no trees. Land cover
mostly paved. Stone, brick, tile, and
concrete construction materials.

4. Open high-rise Dense mix of low-rise buildings
(1–3 stories). Few or no trees. Land
cover mostly paved. Stone, brick,
tile, and concrete construction mate-
rials.

5. Open mid-rise Open arrangement of tall buildings
to tens of stories. Abundance of per-
vious land cover (low plants, scat-
tered trees). Concrete, steel, stone,
and glass construction materials.

6. Open low-rise Open arrangement of midrise build-
ings (3–9 stories). Abundance of
pervious land cover (low plants,
scattered trees). Concrete, steel,
stone, and glass construction mate-
rials.

7. Lightweight low-r. Dense mix of single-story buildings.
Few or no trees. Land cover mostly
hard-packed. Lightweight construc-
tion materials (e.g., wood, thatch,
corrugated metal).

8. Large low-rise Open arrangement of large low-rise
buildings (1–3 stories). Few or no
trees. Land cover mostly paved.
Steel, concrete, metal, and stone
construction materials.

9. Sparsely built Sparse arrangement of small or
medium-sized buildings in a natural
setting. Abundance of pervious land
cover (low plants, scattered trees).

10. Heavy industry Low-rise and midrise industrial
structures (towers, tanks, stacks).
Few or no trees. Land cover mostly
paved or hard-packed. Metal, steel,
and concrete construction materials.

Table 1. LCZ classification system, built-up structures.

Land cover types Definition
A. Dense trees Heavily wooded landscape of decid-

uous and/or evergreen trees. Land
cover mostly pervious (low plants).
Zone function is natural forest, tree
cultivation, or urban park.

B. Scattered trees Lightly wooded landscape of decid-
uous and/or evergreen trees. Land
cover mostly pervious (low plants).
Zone function is natural forest, tree
cultivation, or urban park.

C. Bush, scrub Open arrangement of bushes,
shrubs, and short, woody trees.
Land cover mostly pervious (bare
soil or sand). Zone function is
natural scrubland or agriculture.

D. Low plants Featureless landscape of grass or
herbaceous plants/crops. Few or no
trees. Zone function is natural grass-
land, agriculture, or urban park

E. Bare rock or paved Featureless landscape of rock or
paved cover. Few or no trees or
plants. Zone function is natural
desert (rock) or urban transportation.

F. Bare soil or sand Featureless landscape of soil or sand
cover. Few or no trees or plants.
Zone function is natural desert or
agriculture.

G. Water Large, open water bodies such as
seas and lakes, or small bodies such
as rivers, reservoirs, and lagoons.

Table 2. LCZ classification system, land cover structures

LCZ is a raster data set, where each pixel is assigned a single
class from the 17 classes, which are equally defined all over the
world. The Tables 1 and 2 show the definitions of the classes
from (Stewart and Oke, 2012). The classes 1 to 10 describe ar-
eas with buildings, they are derived from parameters like height
of the buildings, ratio of width and height and materials. The
classes A to F describe land cover and derived from parameters
like height of trees, density of trees and soil type. And finally
class G represents water. This classification uses resolutions be-
tween 100 m and 200 m, because it is not constructive to describe
topographic layout and morphology in a finer resolution. Large
amount of work in context of LCZ is directed toward classifying
single cities (Danylo et al., 2016) (Verdonck et al., 2017).

Two organisation are responsible for collection of LCZ data and
their securing their quality, those are GeoWiki and World Ur-
ban Database and Portal (WUDAPT). The data contribution is
driven by croudsourcing campaigns (See et al., 2013) (Foody et
al., 2013) and games (Laso Bayas et al., 2016).

Convolutional Neural Networks (CNNs) are deep learning archi-
tectures, inspired by the visual perception mechanism of animals
based on receptive fields in the visual cortex (Gu et al., 2018).
CNNs have been known for a couple of decades, e.g. LeChun et
al. (LeCun et al., 1990) showed in 1989 that CNNs can be used
to classify images of hand-written digits. Since the mid 2000s
CNNs started to get more popular because the previously occur-
ring problems like the lack of training data and computational
resources became less relevant (Gu et al., 2018). This was on the
one hand due to the improvement of the methods on the other
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hand due to the usage of more efficient hardware. Nowadays
CNN architectures reach state-of-the-art performance in many
image related tasks like image classification, which is the task
of assigning the correct class to an image (or image patch) or se-
mantic segmentation, where the goal is to assign the correct class
to each pixel of the input image.

Twitter data is present in a large amount, but it is unequally dis-
tributed in space. There are areas where only sparse informa-
tion is present, as opposed to other, mostly urban areas with high
amount of Twitter data. Among all the Tweets, the amount of
geotagged messages is rather low, and also differs from country
to country. Geotagged tweets have a very unclear relation be-
tween their content and their location: usually people use the
it as communication medium and not as means to convey in-
formation about the environment. However, in emergency sce-
narios (such as earthquakes, flooding), people also talk about
it and thus, the content can be beneficially exploited (see e.g.
(Dittrich et al., 2015)). Independent of this problems there are
several research topics on employing spatial information like au-
tomated derivation of features with spatial relevance (Sengstock
and Gertz, 2012) or inferring home locations (Lin and Cromley,
2018) from geotagged tweets. Tweets contain several types of in-
formation, like text image/video and location, which can be fused
in order to identify spatial events such as floods (Feng and Sester,
2018). Nevertheless simple meta information like user mentions,
count, and tag count can be used to distinguish between types of
users (Guo and Chen, 2014).

3. DATASET

When we created the dataset to proof our hypothesis, the biggest
limitation was the availability of LCZ data. This examination fo-
cuses on the local area around Washington DC, defined by the
corresponding LCZ label raster provided by WUDAPT, visual-
ized in Figure1. We decided to investigate this area because it
seemed suitable for our purpose due to high amount of Twitter
data as well as the availability of open satellite imagery. The LCZ
label raster is used as ground truth in our experiments. Although
the provided labels are not annotated by humans, but instead cre-
ated by a classification algorithm, we assume the data to be error
free. The LCZ classes are distributed in this area as shown in Ta-
ble 3. The classes 7 (Lightweight low-rise), 10 (Heavy industry),
C (Bush scrub) and F (Bare soil or sand) are not present in this
data set.

The Twitter data set is generated by filtering 680.982.894 Tweets,
collected in the time between 09 February 2018 and 19 June
2018, by their location with respect to our target area. The re-
sult is 392559 tweets with geotags in Washington DC. The spatial
distribution of the Tweets is shown in Figure 2. It is obvious, that
most of the Tweets are present in the urban agglomerations.

For the baseline of the CNN we take advantage of the publicly
available satellite imagery, gathered during the SENTINEL-2
earth observation mission developed by the ESA. In particular
we used rectified and georeferenced images of different spectral
bands (Processing Level-1C). We decided to use the infrared- red-
green- and blue channels with a spatial resolution of 10 m as well
as the bands 11 and 12 with a spectral resolution around 1610 nm
and 2190 nm respective. These two bands have a spatial resolu-
tion of 20 m.

Figure 1. LCZ reference data, colored by LCZ class.

4. METHODOLOGY

The Washington DC tweets are rasterized according to the area
and cell size of the ground truth. The Tweet count per cell is
shown in the Figure 2. The resulting rasters contain large areas
without Twitter data. Tweet activity is mostly concentrated in
urban areas, especially in city centers. The distribution of the
LCZ classes within the areas with Twitter data is shown in third
column in table 3. Twitter data is present only for 2.36 % of the
target area. As expected, the representation of rural classes like
D (Low plants) and A (Dense trees) is lower then in the overall
distribution, which can be seen in second column of Table 3 We
generate six feature maps which are used in two experiments.
Those features were selected due to their potential relevance for
LCZ classes. The feature maps are generated as follows:

1. Tweet count (TC) - summed tweets with geotag in a partic-
ular cell. This information could help distinguish between
urban and rural area. TC contains integer values from zero
up to 19 thousand.

2. Mean text length (MTL) - mean count of symbols per
tweet. Text length is a simple feature which could help dis-
tinguish between private, casual tweets and bussiness tweets
of companies. More general, this feature can contain infor-
mation whether or not this is a spontaneous tweet or it is
a well planed tweet with optimized content dense. Areas,
where companies place their offices tend to have specific
structure, which can be related to LCZ classes. This fea-
ture is a mean over tweet length, which is limited by 280
symbols constraint.

3. Mean friends count (MFC) - mean count of friends of
the author of the tweet. Similar as MTL this feature could
be useful to identify business usage. Companies gather
all possible followers in order to reach most potential cus-
tomers.The values of this feature vary up to mean 193,066.0
friends per cell.

4. Mean time (MT) - Hour of time, when the tweet was
posted. Tweet time could indicate information whether it
is residential area or recreation area. This raster contains
the mean over values in range of 0 to 23, representing round
down local hour of time.
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Figure 2. Spatial distribution of the Twitter data. Colors represent number of tweets in a single cell TC.The single cell hot spots are
not visible in this view. Right lower corner zoom in: Tag count MTC value distribution.

5. Mean tag count (MTC) - mean count of tags used in a par-
ticular tweet. This could contain information about different
user types (Diansheng and Chao, n.d.). Different user types
could be an indicator for different LCZ areas. Values of this
feature vary in the range of 0 to 11

6. Mean user mentions count (MMC) - mean count of Twit-
ter users mentioned in a particular tweet. Same relevance as
MTC. MTC

These Twitter features are used in the two experiments. The first
experiment uses only the six Twitter feature maps to predict LCZ
classes using boost trees. No additional information is used.

For the second experiment we prepare the Twitter data feature
maps for the training, by means of linear normalization to the
interval from 0 to 1. The feature maps TC and MFC contain hot
spots with few single cells containing very high values. Linear
normalization of such a feature map would contain in most cell
very small normalized values, therefore we crop the values above
the 95th percentile.

The second experiment uses a Convolutional Neural Network for
a pixel wise (cell wise) prediction of LCZ classes based on dif-
ferent bands of satellite imagery and the six Twitter feature maps.
In order to investigate the influence of the Twitter data we train
and evaluate two classification models. The first one, referred to
as baseline model, infers the LCZ classes based on the satellite
images only. The second version of the model additionally uses
the Twitter data and is referred to as augmented model.

5. FIRST EXPERIMENT

In the first experiment we use the six earlier described feature
maps as input. The input data has the following structure for a
single entry:

TC|MTL|MFC|MT |MTC|MMC||LCZClass

The distribution of the classes within the Twitter data can be seen
in third column of the table 3.

In order to combat overrepresentation we apply random under-
sampling. All classes have at least 540 samples, except class
A with 475 samples. Therefore only the following classes are
trained in this experiment: {2, 3, 5, 6, 8, 9, A} Total number of
used samples is 3715. All the data is divided into test set (67%)
and test set (33%).

The classification model is implemented using XGBClassifier
from the eXtreme Gradient Boosting Package provided by the
Distributed (Deep) Machine Learning Community (DMLC). The
metaparameters are optimized by means of a grid search. The
number of estimators is selected using cross validation with 5
folds.

In order to avoid the influence of the outliers, the experiment is
repeated 10 times. For each repetition the following performance
metrics are calculated for the test set and finally averaged over
all 10 repetitions: F1 score per class, overall accuracy, recall and
precision.
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LCZ Class
Support F1 [%]

total[%
]

Tw
itter[%

]

Tw
itter[#]

baseline

augm
ented

1 Compact high-rise 0.06 0.03 234 24.7 34.8

2 Compact mid-rise 0.11 0.07 540 34.8 55.0

3 Compact low-rise 0.97 0.17 1308 48.3 53.3

4 Open high-rise 0.02 0.01 58 3.2 0.45

5 Open mid-rise 0.45 0.09 641 27.7 30.8

6 Open low-rise 37.07 1.19 8687 86.6 87.1

7 Lightweight low-r. 0.00 - - - -

8 Large low-rise 3.86 0.57 4129 72.4 72.9

9 Sparsely built 27.34 0.12 854 70.1 71.1

10 Heavy industry 0.00 - - - -

A Dense trees 23.22 0.07 475 79.6 81.1

B Scattered trees 0.24 0.004 29 33.1 37.3

C Bush, scrub 0.00 - - - -

D Low plants 4.18 0.01 64 56.0 62.2

E Bare rock or paved 0.06 0.01 61 15.7 11.2

F Bare soil or sand 0.00 - - - -

G Water 2.43 0.01 69 92.3 92.5

Sum 100 2.36 17149 - -

Mean - - - 49.9 53.1

Table 3. LCZ support and F1 score per class.

6. SECOND EXPERIMENT

In the second experiment we investigate, if the LCZ classifica-
tion results of a CNN based on satellite images can be improved
by additionally feeding the generated Twitter feature maps to it.
Therefore we set up a fully Convolutional Neural Network. In
comparison to a standard image to class label network where in-
put and output are the same spatial resolution, we have to deal
with different spatial resolutions of the input and reference data.
The highest ground sampling distance (GSD) of 10 m comes with
the infrared-, red-, green- and blue channels of the satellite im-
ages. The other two used bands 11 and 12 have a GSD of 20 m
and the Twitter feature maps as well as the reference label maps
have a GSD of 100 m.

Instead of sampling the satellite images down by a factor of 10
and 5 respectively, we decided to create a network with a down-
sampling architecture, which is capable to receive the input data
within the highest available resolution. This is realized by using
the input data with the highest spatial resolution as the first input
and then performing strided convolutions to reduce the size of
the intermediate feature maps. The remaining input images with
lower resolutions as well as the Twitter feature maps are then
concatenated to the intermediate feature maps with the according
size. Besides the benefit of using the available input data in max-
imum resolution, the developed architecture has two additional
advantages. Firstly, since the network is fully convolutional, it is
possible to feed different sized images to the network (as long as
the ratio between the different input data matches). This is used
in terms of training the network on patches, where the size of the
first input images is 250 x 250 px and evaluating the network on

bigger parts of the image. The second advantage refers our inves-
tigation regarding the Twitter data. In order to set up the baseline
model we simply skip the concatenation of the Twitter data, with-
out modifying the rest of the network. The network architecture
of the augmented model is shown in Figure 3. The filter sizes
were chosen to create an overlap during the strided convolution
and additionally infer an appropriate perceptive field of 1.6 x 1.6
km for the classification of each target tile. All convolutions are
followed by adding a bias and applying the leaky rectified linear
unit as activation function.

Figure 3. Architecture of the Convolutional Neural Network. On
top of the network the details of the convolution operation are

shown. Below we displayed the size of input and feature maps.
The blue box represents the Twitter feature maps, which are only

used in the augmented model.

In order to evaluate the models in a four-fold cross validation,
the input and reference images are divided into four quarters of
same size. In the second step, 5000 randomly rotated patches
are extracted out of each quarter. During the extraction of a ro-
tated patch we use bi-cubic interpolation for the satellite images
and nearest neighbour interpolation for the Twitter feature maps
as well as the reference LCZ data. Each resulting patch contains
the satellite images, the Twitter feature maps as well as the ref-
erence labels of the same 2.5 x 2.5 km square. Both networks
are trained four times on the patches of three quarters in a round
robin fashion. The respectively last, unseen quarter of each run is
used for the evaluation of the network. Each run involves a fixed
number of training iterations. In each iteration the network pre-
dicts 4800 patches and the soft-max loss of the predicted classes
w.r.t. the reference data is minimized using gradient descent. We
weight the losses of each LCZ class according to the overall class
distribution in the investigated area.

We decided for a fixed number of iterations as a stopping crite-
rion, since we do not use an additional validation set due to the
low amount of data. We choose iteration 500 by analyzing the
mean F1 score for the test set over 1000 epochs for both models
and all quarters as test set. In Figure 4 the mean F1 score for the
upper right quarter over 1000 training epochs is shown, where
the network uses the patches of the other three quarters as train-
ing data. The shown graphs are slightly smoothed using the mean
over a window of five epochs for visualization purpose. It can be
seen, that the mean F1 score reaches a plateau at epoch 500 for
both models.
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Figure 4. Exemplary smoothed trend of the mean F1 score in the
test quarter for both models over 1000 iterations. Both models

reach a plateau after approximately 500 training epochs.

For the final evaluation we repeat the training 5 times for each
quarter as test set with different seeds for the network parameters
(weights and biases) to ensure that the results are not due to good
or bad initial values. To evaluate both models we calculate the
confusion matrix after each epoch for the testing quarter. These
matrices are summed up epoch wise over all runs for both mod-
els respectively, resulting in one confusion matrix per model and
epoch. These matrices are then used to calculate further quality
measurements like the F1 score, recall and precision per class as
well as the mean F1 score and the overall accuracy.

7. RESULTS

In the first experiment the resulting mean overall accuracy of the
test set classification reached 25.5 % which is slightly above the
performance of a random classifier (7 classes, corresponding to
14.3 %). It is worth to note that the performance of the LCZ class
2 (table 4) is far above random classification.

Class F1 score[%] Recall [%] Precision [%]
2 48.8 61.1 40.6
3 18.5 16.6 21.0
5 16.8 15.2 19.7
6 19.8 19.0 21.4
8 21.0 20.5 22.2
9 26.9 33.2 22.7
A 15.7 13.0 20.8

Table 4. Results of the First experiment.

The results of the second experiment are shown in the last two
columns of table 3. There we compare the F1 scores of each
class for both models. For 11 out of the 13 classes which are
represented in the data, the augmented model reaches a higher
F1 score. This trend is also represented in the mean F1 scores,
shown in the last row. The overall accuracy is also 1.3 % higher
in the augmented model with a value of 78.6 %. The absolute
differences in the F1 scores per class are visualized in Figure 5.

Although the improvement of the augmented model is below 5
% for most classes, the classes 1 and 2 show an improvement of
approx. 10 % and 20 % respectively. The F1 score for the classes
4 and E decreased by less than 5 % in comparison to the baseline
model. In Figure 6 the mean F1 scores for both models are shown
for each epoch. The augmented model over performs the baseline
model for most epochs.

Figure 5. Difference in F1 score per class. Positive value
indicates a better score for the augmented model.

Figure 6. Mean F1 score for both models over 500 training
epochs. The values are based on the summed confusion matrices

over all runs and quarters per epoch and model.

8. DISCUSSION

Since the overall accuracy achieved in the first experiment is bet-
ter than a random classifier, we conclude that Twitter data con-
tains information suitable for LCZ classification. As expected,
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the quality is low, due to missing explicit content information and
noisy nature of the Twitter data. In second experiment we gath-
ered additional evidence for the positive effect of Twitter data
on a more realistic classification scenario. The results also im-
ply, that our developed architecture is capable of fusing the dense
satellite images and the sparse Twitter data. In both experiments
this improvement was most prominent for LCZ class 2. Against
our expectations we did not observe a dependency between the
amount of Twitter data and the improvement of the prediction of
a class. We assume, that this is due to the fact, that the absence of
Twitter data itself is a valuable information for the implemented
classification model.

Prominent is the F1-score decrease of the class 4 and E. As de-
scribed in section 6 we combat the imbalanced distribution of the
data by applying weight penalties to over presented classes. This
penalties are proportional to the count of the particular class in
the whole training area. The class 4 and E are under represented
in Twitter data so that few noise instances of Twitter data could
cause the performance loss.

As a conclusion we state that we proved our initial hypothesis
about the beneficial contribution of Twitter data on land use clas-
sification and our classification approach is suitable for data fu-
sion.

9. OUTLOOK

In this work we use most simple and straight forward Twitter data
features. It would be a logical step to investigate, if more complex
features derived from tweet text or pictures improve the classifi-
cation results even more. Since we assume that many tweets are
not related to their tagged location, those features may also help
to provide more specific or additional locally related information
to the model. On the other hand we did not investigate, if all of
the used features derived from the Twitter data are actually rel-
evant. In future work we want to train the model using only a
subset of the features to get a better understanding about the rel-
evant information.

Furthermore our goal was to investigate the improvement of land
use classification using Twitter data. Since we proved this hy-
pothesis, we now want to develop a more sophisticated and opti-
mized classification model. Considering more training and test-
ing data, e.g. including different cities, we could evaluate our
approach on a more realistic scenario. This would additionally
allow us to see whether the incorporation of Twitter data can im-
prove the models capability of generalization.
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