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Abstract. Recently, alternative routes have gained momentum in the crea-
tion of Location-Based Services. This paper gathers and sorts existing work 
regarding quality metrics of alternative routes and alternative graphs in 
road networks and discusses their commonalities. Based on this, the paper 
clarifies what challenges need to be tackled in order to create such metrics 
for constrained free space scenarios and discusses possible courses of ac-
tion, opportunities, and limitations. The general goal of this paper is to 
stimulate the discussion on and the development of quality metrics for al-
ternative routes and alternative graphs for constrained free spaces like pe-
destrian navigation, or even maritime or aviation scenarios. 
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1. Introduction 
The technical progress in reducing the physical size of processing power, 
storage, and connectivity supports the enlarged spread of Location-Based 
Services (LBS) not only on powerful mobile devices like smartphones, but 
also on mobile robots or in distributed sensor networks. The importance of 
single computing devices vanishes and leads to an active construction of 
ubiquitous computing and the Internet of Things. Navigation is surely a 
central topic in LBS consisting, amongst others, of positioning, path find-
ing, path representation, and (interactive) guidance. The calculation of a 
shortest path between two points in a street network is one of the most fa-
mous applications. 

Routing in street networks is usually handled using a directed graph where 
edges represent streets and interconnections of streets represent nodes. 
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Another field of research and application is routing in constrained free 
space scenarios, i.e., wayfinding for subjects that can freely operate in a 
scenario like pedestrians in large buildings or characters in computer 
games. The main question is to find an appropriate map representation that 
handles the tradeoff between the map’s simplicity and expressive power. 
Basically, the simpler the map the faster the algorithms can perform. On the 
other hand the scenario may suffer from missing details or imprecisions. 
There exist numerous considerations on how to create simple maps out of 
complex maps, consider topology-aware shape simplification, for example. 
The calculation of shortest paths is widely investigated leading to speed-up 
techniques that enable continental-sized path finding in real-time applica-
tions. A further, much less examined, field of research is the question of 
how to calculate alternative routes and the subsequent creation of an alter-
native graph. An alternative graph is the aggregation of several alternative 
routes into one representation. Often, there are several highly different 
ways to traverse a map from a given start and to a goal that are nearly as 
optimal as the shortest path. Depending on the use case, the optimal path 
may not match the personal preferences of the concrete user, or the prefer-
ences may be hard to obtain or calculate. They may depend on local 
knowledge (Abraham et al., 2013), or contextual information like toll pric-
ing, scenic value, fuel consumption, or the risk of traffic jams (Bader et al., 
2011). Thus, true to the slogan “Human-in-the-loop”, we want to compute a 
set of good alternatives in order to let the user choose based on personal 
needs. Besides that, there are motivations for alternative routes for non-
human users, i.e. robots, or as a background service: multiple mobile robots 
get different routes from start to goal to increase the chance that at least 
one robot will find the goal; proactive avoidance of bottlenecks; offline cal-
culation of pathways for action forces like firefighters; non-player charac-
ters in computer games that tactically adapt their travel path. The task of 
calculating alternative routes and alternative graphs is quite difficult since 
there is no clear definition of what represents a good alternative; the topic is 
very subjective, almost philosophical. 
Testing the quality of possible alternative routes and alternative graphs is 
not trivial and – at least for street network scenarios – in the focus of many 
researchers (Kobitzsch, 2013). There is much work on alternative routes 
and alternative graphs in streets networks, but not for constrained free 
space scenarios like navigation in buildings, maritime navigation in har-
bors, pedestrian navigation, or airplane navigation. With this paper we 
want to close the gap and discuss the reasons why the proposed solutions 
for outdoor scenarios cannot directly be transferred to constrained free 
space scenarios. Our goal is to stimulate research and discussion on 
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measures and target functions for comparing sets of routes in said con-
strained free space scenarios. 
The remainder of this paper is structured as follows: After introducing the 
motivation of this paper, Section 2 introduces needed background including 
map representations, algorithms for calculating alternative routes, and ex-
isting quality metrics for alternative routes and alternative graphs in street 
networks. Section 3 discusses the transferability of the measures to free 
space scenarios and their mutual interference. Section 4 concludes the pa-
per. 

2. Background 
This Section deals with the presentation of different ways to represent con-
strained free space scenarios and algorithms for calculating alternative 
routes. Based on this, existing measures for calculating the quality of alter-
native routes and alternative graphs in street networks are discussed. 

2.1. Map Representations 
Street networks form a graph structure in a quite natural way: streets are 
modelled as sequences of linear segments and crossings of streets as well as 
turning points inside a street are usually becoming a vertex of the graph. 
Then, the graph is an embedded and high-quality abstraction of the real 
abilities of movement in a street network. 

For constrained free space, the situation is different. First of all, movements 
in all directions are possible. However, we might have some constraints 
regarding the possible movements, e.g., a mobile robot may only change 
movement by steering leading to smooth trajectories with bounded curva-
ture. Dealing with such complicated objects is computationally demanding 
and often intractable. Therefore, trajectories are often modelled as pol-
ylines, that is, by points connected by linear segments. In the sequel, we will 
always assume that routes are given as polygonal lines and not as some par-
ametrized curves. 

Still, dealing with polylines in free space is difficult. An example is the op-
timization over all possible polylines for finding the shortest connection 
between two points. At this point, map representations come into play, 
which effectively reduce the space of possible movements for more efficient 
planning. Map representations involve the tradeoff between the map repre-
sentation’s ability to describe any given path in the building and the compu-
tational complexity of algorithms performing choices in the environmental 
model. 
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Recently, relatively free movement is being planned in the field of continu-
ous planning. More classically, however, synthetic graphs are being used 
such that the paths through the graph represent possibly large sets of 
movements through constrained free space. 

A very simple form of map representation is given by constrained grids. In 
this map representation, one chooses an arbitrary length and a regular grid 
which is then put over the map. The points of the grid represent vertices 
and two adjacent points in the grid are connected if and only if they are 
connected by free space. In occupancy grids, for example, a two-
dimensional bitmap is being used to represent walkable space in one color 
(e.g., white) and obstacles in another color (e.g., black). Then, each pixel 
creates a vertex and two pixels are connected in the graph if they are both 
white and direct neighbors. At a first glance, grids are large and inefficient; 
however, as computers are actually able to manipulate large bitmaps, they 
can be very efficient in practice. Additionally, the graphs have bounded de-
gree of  when connecting vertical and horizontal neighbors, or  including 
diagonals. Finally, the algorithms’ performance depends only on the 
amount of free space and not on the complexity of involved geometry. 
A second form of creating a graph representation of constrained free space 
is given by polygonal maps. For polygonal maps, the constraints are mod-
elled as polygons and a graph is created by using vertices and edges of the 
polygons. There are several constructions for maps given as sets of such 
obstructive polygons. If, for example, all vertices of these polygons are con-
nected as long as the direct line between them does only cross free space, 
we call it visibility graph. This representation has some good properties: for 
example, it can be relatively small for few and simple polygons and it con-
tains all shortest paths between vertices of the involved polygons. However, 
it is not obvious, how this graph can be used for motion planning starting in 
arbitrary locations in free space and shortest paths in this graph tend to 
scrape along walls or walk in diagonals. 
Another approach called navigation mesh is given by using a polygonal tes-
sellation of free space and adding edges to a graph for each edge shared by 
two polygons meaning that one could go from one polygon to the other. In 
such constructions, each polygon represents some space and simple poly-
gons have the advantage of having low degree in the resulting graph. There-
fore, navigation meshes are often built from very simple polygons such as 
triangles or rectangles. In a sense, the grid-based approach is also a naviga-
tion mesh in which small and regular squares are being used for the poly-
gons. There are some choices of building a graph representation from a 
navigation mesh: one could just represent each polygon as a vertex and 
connect neighboring vertices. When the polygons are convex, one often uses 
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centers of the polygons’ edges as navigation points leading to slightly better 
paths as they become embeddable into free space. However, the resulting 
paths often have an unusual shape. A third way of extracting a navigation 
graph from a navigation mesh is by traversing edges of the involved poly-
gons. This leads, again, to wall-scraping behavior, which can have positive 
impact (e.g., knowing which obstacles are being passed) or negative impact 
(e.g., not being able to directly visualize the path) depending on the applica-
tion. 
 

 
Figure 1. Examples of map representations, adapted from (Werner, 2014). 

 

Figure 1 depicts examples for the three basic approaches in an indoor sce-
nario. Figure 1a shows that the amount of edges in visibility graphs can get 
high very quick and that the average degree of vertices will be high, too. 
This effect is even worse, when GIS systems are being used in which round 
objects are tessellated into many line segments. A circular pillar can easily 
generate hundreds of additional lines. In contrast to that, a regular grid 
graph is depicted in Figure 1b. It has low-degree vertices, however, there 
are many of them. Figure 1c and Figure 1d depict a rectangular navigation 
mesh. In Figure 1c the shortest path is calculated only on the rectangles’ 
center points leading to the situation that the lower-right line segment is 
not fully inside free space. In Figure 1d, however, the shortest path remains 
in free space due to the use of the middle points of the rectangle’s edges and 
also the rectangles’ convexity. 
These basic approaches are being used to make path planning in con-
strained free space tractable and simple. However, they all have in common 
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that their scale is limited. In this case, space subdivisions are commonly 
used to combine several “local” models in a general view. Usually, space is 
subdivided recursively (e.g., Binary Space Partitioning) or in a regular way 
(e.g., Grids) and local models can be combined to models that are small, but 
large enough to contain all relevant geometry. 
Finally, reducing the combinatorial complexity of free space introduces in-
accuracies as not all movements are being represented. From an observer 
perspective, one has to discuss, how a given trajectory is represented in the 
graph, and, from a planning perspective, one should consider post-
processing to alleviate artifacts like diagonals, wall-scraping, and detours. 

2.2. Algorithms for Calculating Alternative Routes 
Finding alternative routes relies on the problem of calculating a single 
shortest path between two given points. Starting with Dijkstra’s algorithm 
from the year 1959 (Dijkstra, 1959), there are considerable extensions and 
speed-ups, see the survey (Bast et al., 2015), for example. 
The next step is to calculate not a single shortest path, but multiple routes. 
The class of -shortest-path algorithms (Eppstein, 1994, Yen, 1971) seem to 
solve the problem but they do not, since, in general, the resulting paths do 
not change significantly until a high value of . An extension is to calculate 

 disjoint paths (Scott, 1997). That in turn introduces the notion of overlap, 
a very important term in the further course of this paper. Currently, there 
do not exist suitable implementations to efficiently enumerate the paths for 
continental sized road networks. 
Another class of algorithms is based on multicriteria optimization, i.e the 
use of multiple edge weights like distance, travel time, or fuel cost. The idea 
is to calculate so-called Pareto-optimal paths, i.e. paths that have the lowest 
edge weights for at least one criterion (Martins, 1984, Delling & Wagner, 
2009, Geisberger et al., 2010, Graf et al., 2010). 

The penalty algorithm tries to compute alternative routes by iteratively cal-
culating the shortest path and increasing certain edge weights (Chen et al., 
2007). There are several improvements of the algorithm together with the 
use for generating alternative graphs (Bader et al., 2011). 
Finally, there is a class of algorithms for creating alternative routes that 
uses via-nodes or plateaus (Abraham et al., 2010, Bader et al., 2011, 
Kobitzsch, 2013, Luxen & Schieferdecker, 2102, Werner & Feld, 2014). The 
basic idea is to concatenate a shortest path from a start to a supporting via-
node with a shortest path from the said node to the goal. Additionally, there 
is a proprietary algorithm called choice routing by Camvit (Camvit, 2009). 
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2.3. Quality Metrics for Alternative Routes 
The central reference for quality metrics for alternative routes is (Abraham 
et al., 2013), a paper that extends its predecessor (Abraham et al., 2010) by 
various extensions and an elaborate evaluation. The authors try to find 
good alternative routes and define an “admissible path” as a path that is 
substantially different to the reference path, not much longer than that, and 
that is natural without unnecessary detours. The just stated three properties 
have been defined formally and will be described successive: 

1. Limited Sharing: The alternative path has to be significantly dif-
ferent to the reference path, i.e. the total length of the edges they 
share must be a small fraction of the reference route’s length. 

2. Local Optimality: The alternative path must be reasonable, i.e. no 
unnecessary detours are allowed. Every local decision must make 
sense, so local optimality is given if every subpath up to a certain 
length is a shortest path. 

3. Uniformly Bounded Stretch: The alternative path must not be 
much longer than the reference path, i.e. every subpath needs to 
have a good stretch. This condition also enhances local optimality, 
since there may be the case that a path has good high optimality, but 
a shortcut could skip an unnecessary part of the route. 

Based on these prosaic descriptions, Abraham et al. formally define the 
class of paths to be found as “admissible alternative paths”. Let  
be a directed graph with nonnegative edge weights, with  being the 
number of nodes and  the number of edges. Given a path  in ,  
is the number of the path’s edges and  is the sum of the edge weights. 
Furthermore,  is the sum of the edge weights shared by paths  and 

, and  is . Given two vertices,  and , finding the 
shortest path – denoted by  – is called the point-to-point 
shortest path problem. Given three tuning parameters , , and 

, and a shortest path  between  and , a - -path  is an ad-
missible alternative if the following criteria are fulfilled: 

1. Limited Sharing:  
2. Local Optimality:  is -locally optimal for . A path 

 is -locally optimal if every subpath  of  with  is a 
shortest path 

3. Uniformly Bounded Stretch (UBS):  is -UBS. A path  
has -UBS if for every subpath  of  with end points , , the 
inequality  holds 

Due to the fact that too many admissible paths can be found, Abraham et al. 
introduce a limited yet useful subset of the class “admissible alternative 
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paths”, namely “single via paths”: Given a start , a goal , and a via-node , 
a via path  is the concatenation of the shortest path from  to  and the 
shortest path from  to . This definition is an unnecessary restriction, as 
Bader et al. (2013) will work out later on, but such routes have interesting 
properties.  has got the lowest stretch of all routes going through node , 
and, more importantly, the local optimality can be violated just around 
node . This fact will be used, amongst others, for further improvements of 
the conditions (Abraham et al., 2013). 
The conditions just described are used as hard constraints for a not further 
defined target function . This function is used to sort candidates and 
return the first admissible path. A possible target function may seek for 
routes having low “limited sharing”, high “local optimality”, and low “uni-
formly bounded stretch”. If the use case is to find multiple alternative 
routes, then just “limited sharing” needs to be calculated regarding the 
shortest path and all alternative routes already found. Both, “local optimali-
ty” and “uniformly bounded stretch” refer to only the path in question. 

(Luxen & Schieferdecker, 2012) present an improvement of the algorithm of 
Abraham et al. regarding query times. The authors propose a fast algorithm 
that stores a small precomputed set of via-nodes for pairs of regions within 
the graph, i.e. they focus on a small candidate set to be tested efficiently. 
They base their via-node routing on top of Contraction Hierarchies (Geis-
berger et al., 2009, Bauer et al., 2010) and achieve routes with higher quali-
ty with faster query times while having negligible memory overhead. 
Another improvement is done in (Kobitzsch, 2013), where the author moti-
vates the contribution with the fact, that the selection process of the known 
via-node algorithm is unsatisfying, since testing all potential candidates 
proves expensive due to many shortest path queries. Existing algorithms 
order the candidates heuristically with potentially better candidates being 
discarded. Kobitzsch uses a different approach by making the viability 
check fast enough to test all potential candidates. Thus, the problem is re-
duced to a small graph representing all potentially viable alternative paths. 

2.4. Quality Metrics for Alternative Graphs 
The central reference for quality metrics for alternative graphs is (Bader et 
al., 2011), a paper that is based on Dees’ master’s thesis (Dees, 2010). Be-
sides that, preliminary aspects have been published before in (Dees et al., 
2010). The main concept is to compute a set of alternative routes which, in 
general, can share nodes and edges, and subpaths of the alternative routes 
can potentially be combined to new alternative routes. Thus, Bader et al. 
motivate and define the concept of an alternative graph (AG) as the union 
of several paths having the same start and goal as a compact representation 
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of multiple alternative routes. They define several attributes quantifying the 
quality of an alternative graph using mathematical definitions of the graph 
structure and show that it is already NP-hard to optimize a simple objective 
function combining just two of the proposed attributes and therefore turn 
to heuristics. The three measures are described as follows: 

1. Total Distance: This measure describes the extent to which the 
routes defined by the AG are non-overlapping. The maximum value 
is reached when the AG consists of disjoint paths only. The mathe-
matical definition of total distance will need a scaling, since other-
wise long non-optimal paths would be encouraged. 

2. Average Distance: This measure describes the path quality as the 
average stretch on an alternative path. The mathematical definition 
will need an averaging in order to avoid a high weight to large num-
bers of alternative paths that are all very similar. 

3. Decision Edges: This measure describes the complexity of the AG 
and is used to retain the representation easily understandable for 
human users. 

After depicting the measures prosaically, we turn to the formal definitions. 
Let  be a graph with an edge weight function . Given a 
source node  and a target node , an AG  is a graph with  
such that for every edge  there exists a simple - -path in  containing 

. For every edge  in  there must be a path from  to  in  and the 
edge weight  must be equal to the path’s weight.  denotes the 
shortest path distance from  to  in , analog  is the shortest path 
distance from  to  in . Based on that, the formal definition of the quality 
metrics for a given alternative graph  is: 

 

 

 

As already stated above, it is NP-hard to optimize a reasonable combination 
of the measures just explained, thus Bader et al. use heuristics to compute 
an AG. They calculate a shortest path, insert it into the AG, gradually calcu-
late further alternative paths, and insert them greedily into the AG regard-
ing the optimization of a target function. 
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(Radermacher, 2012) is a bachelor’s thesis that efficiently implements the 
concept of (Bader et al., 2011). Basically, Radermacher combines a Multi-
Level-Dijkstra (Delling et al., 2011) with the penalty method that is aug-
mented with path analysis. 

(Kobitzsch et al., 2013) present a viable implementation of (Bader et al., 
2011) such that it can be used interactively. They modify the penalty algo-
rithm through a multi-level partitioning together with the penalization 
scheme for the route and its adjacent edges. Furthermore, they modify the 
function that tests if a candidate is feasible and introduce further speed-ups 
using Customizable Route Planning (Delling et al., 2011, Delling & Wer-
neck, 2013) and Dynamic Level Selection. Kobitzsch et al. state that (Bader 
et al., 2011) compute up to 20 paths and perform a selection based on prior-
ity terms afterwards. Since Kobitzsch et al. focus on query times, they take a 
different approach by considering the potential value to the alternative 
graph. Thus, a path must offer at least one deviation of a certain length, and 
the detours are checked for their stretch. 

At the same time, (Paraskevopoulos & Zaroliagis, 2013) has been published 
proposing an algorithm that creates alternative graphs with higher quality. 
They suggest a pruning stage preceding the heuristic method for finding 
alternative paths, and introduce filtering and fine tuning of both, plateau 
algorithm and penalty algorithm. 

3. Quality Metrics in Constrained Free Space 
The previous section illustrated related work regarding quality metrics for 
alternative routes and alternative graphs in street networks. Abraham et al. 
state that a proper alternative route should be substantially different from a 
reference path (“limited sharing”), should not have unnecessary detours 
(“local optimality”), and should be not much longer than the shortest path 
(“uniformly bounded stretch”). Similarly, Bader et al. proposed that a good 
alternative graph should have low overlap of the included routes (high “to-
tal distance”), low stretch of included alternatives (low “average distance”), 
and low complexity (few “decision edges”). 
In this section, we discuss the transferability of the measures from road 
networks to constrained free space scenarios. From a general point of view, 
we can consider only four instead of six measures, since some measures of 
alternative routes and alternative graphs are similar. 

In the following, “limited sharing” and “total distance” will get a unified 
treatment as they both limit the amount of edges that alternatives have in 
common. Similarly, “uniformly bounded stretch” and “average distance” are 
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treated together as they both rely on the idea that alternatives should not be 
excessive in length. The measure of “local optimality”, that means even 
subpaths should be short, and the idea of counting “decision edges” are the 
remaining concepts from literature to be adapted for constrained free space 
scenarios. 

3.1. Limited Sharing & Total Distance 
One central idea for both, alternative routes and alternative graphs, is 
linked to the length of the edges that alternatives have in common. The 
terminology was “limited sharing” for alternative routes and “total distance” 
for alternative graphs. The central difference between these two ideas is 
that “limited sharing” applies to pairs of paths while “total distance” 
measures whether the integration of a given path into an already existing 
alternative graph is sensible. In practice, optimizing an alternative graph 
using this measure depends on the ordering of alternatives considered. 
The most important question for the application of these measures in free 
space scenarios is how overlap or sharing can be defined in an unambigu-
ous way. 
Even the implementation of a simple shortest path algorithm such as Dijks-
tra’s algorithm tends to keep the shortest path as much as possible to the 
left (or right). As constrained free space scenarios potentially have plenty of 
equal-length paths, this tendency realizes to significantly different shortest 
path from A to B and vice versa. Figure 2 illustrates this idea. 

 

 
Figure 2. Two examples representing the problem of non-overlapping routes due to imple-
mentation details. 

 
The reason why the overlap definitions inspired by street networks is not 
applicable lies in the high ambiguity of equivalent routes of equivalent 
meaning. For example, the four routes depicted in Figure 3 are clearly dif-
ferent albeit human users would discuss whether the two middle routes are 
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actually alternatives. If the map was at continental scale such that no inter-
action between both routes is to be expected (e.g., airplane navigation), we 
would accept them as proper alternatives. If, however, this is an indoor sce-
nario where pedestrians on these two routes can see and talk to each other, 
we would likely identify them as equivalent. 
 

 
Figure 3. Three or four alternative routes, based on the map scale. 

 
In order to combat this problem, we need a way to decide which points of 
two different routes actually “overlap” in an application-dependent and 
map-dependent way. We identify the following three general strategies to 
extend the measures of overlap to our scenario. 

As the original measures were defined for paths in graphs, it would be de-
sirable to consistently map all free space paths to a graph such that different 
edges mean semantically different movements. Then, two paths that share a 
specific semantic movement in a building, like going through a specific 
hallway, will have increased overlap. 
There are many ideas of automatically or manually creating such graphs for 
specific classes of constrained free space navigation. However, realizing a 
graph means to realize a tradeoff between map complexity and expressive-
ness. When, for example, a long hallway is represented by a single edge 
such that all users of the hallway have overlap, this edge can hardly get a 
sensible embedding into the map. If, however, the graph shall get a visual 
representation in the map, the complexity will be higher and overlap will 
become more and more unclear. For the concepts to automatically generate 
navigation graphs including navigation meshes, straight skeletons, grid 
graphs and the like, the number of edges and at the same time the quality of 
a possible overlap measurement depends on the complexity of the involved 
geometry. Therefore, a general solution to define overlap will not be 
reached. However, if the application uses any of these techniques anyways, 
one should consider the possibility of using the graph at least to some ex-
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tent. Obvious ideas to define a (potentially ambiguous) overlap is to consid-
er the joint traversal of polygons or the identical sequence of passed edges. 
A second approach would be the identification of connected spaces such 
that overlap can be defined from the spaces that two routes have in com-
mon. From a general point of view, this amounts to some sense of map to-
pology. Ideally, it would be great if every point was part of one and only one 
such connected space. This is not always the case, but room names in build-
ings are a remarkable example where this works. Another sense of topology 
can be generated from homotopy of routes. That is, two routes have overlap 
as long as they can be continuously deformed into each other inside a map 
(see Figure 3). However, this concept is, again, a binary one and does not 
distinguish between small obstacles and large detours. Additionally, ho-
motopy is only applicable to pairs of routes and, therefore, not obviously 
applicable in alternative graph situations. 
This fact motivates the third general approach to extend overlap to con-
strained free space: We can just replace the binary and counting nature of 
all overlap measures by a fully continuous framework in which distances of 
routes are used to assess overlap. This is elegant in the sense that the classi-
cal graph-based definitions of overlap can be seen as special cases in which 
the distance is zero or non-zero. A threshold can then be used to differenti-
ate overlapping and non-overlapping trajectories. On the other hand, one 
should also consider the integration of continuous measures of overlap in 
alternative route generation. 

3.2. Uniformly Bounded Stretch & Average Distance 
Bounding the stretch of a path is a straightforward technique to limit the 
amount of detours while generating alternative routes. However, when 
stretch is chosen too small, some alternatives cannot be uncovered. The 
ideal amount of stretch depends on the application, for example, how many 
alternatives will be used in the next step, and the environment: At an air-
port, longer alternatives might be acceptable and lead to completely differ-
ent journeys through shops; in manufacturing and robotics, however, every 
detour costs money. 
Additionally, the length of a route in a map representation for constrained 
free space can be highly different from the length in reality. For example, 
navigation meshes often use central points of larger polygons or edges as 
waypoints. This makes routes longer than they might be in reality. To the 
contrary, corner graphs have the property that every length in the derived 
graph is the shortest among all routes between start and goal. 
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3.3. Local Optimality 
In order to avoid unnecessary detours, the measure of local optimality was 
introduced in (Abraham et al, 2013). In their situation this was an im-
portant feature, because they created alternatives by concatenating two 
shortest paths leading to situations, where the combined path has got ex-
treme turning points. They optimized such situations by checking around 
the point of contact of these two shortest paths that no sensible shortcuts 
exist. In the context of alternative graphs, Bader et al. (2011) realize the 
same problem, but they push the solution into a post-processing step. We 
think that this is due to the situation that even alternative graphs can be 
used to generate overly long alternatives, which imply the need for post-
processing anyways. 
While local optimality can be strictly defined on a graph level, it is not clear 
how to define it for continuous free space. The question is how to handle 
detours that occur only due to inaccuracies in the map-to-graph translation. 
Additionally, the vast amount of possible choices in free space makes the 
approach computationally demanding or even infeasible. This all boils 
down to two questions: What is an “optimal” path and what is a “locally 
optimal” path. When applying local optimization outside the area of street 
networks, we think that one should consider local optimization as an appli-
cation-dependent post-processing step, as the meaning of optimal and local 
are otherwise unclear. 

Additionally, local optimality could be implemented with a different opti-
mization goal: Not the shortest alternative route is to be found, but the sim-
plest one. If one is really interested in optimizing the length, there is a large 
body of research on line simplification which can be adapted to this situa-
tion. But, in many cases this is in contrast to application goals as shortest 
paths tend to scrape along geometry or cross on unnatural diagonals. 

3.4. Decision Edges
“Decision edges” count the number of decisions that can be made in an al-
ternative graph. For a vertex with one edge going out, it is zero as there is 
no alternative decision (see left-hand side of Figure 4). For a vertex with 
three outgoing edges, however, it is two, as one edge has to be taken, but 
there would have been two alternatives. For the complete alternative graph, 
one takes the sum over all alternative choices. The goal in designing alter-
native graphs is to keep the value of “decision edges” small in order to have 
a small set of alternatives. However, if it is too small, too many additional 
alternatives might be discarded. 
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Figure 4. Left: An outdegree of  means that no decision can be made, an outdegree of  
means two decisions can be made besides the necessary flow. Right: Schematic representa-
tion of a crossroads where the gray area may represent the location of a decision. 

 
Translating this feature to constrained free space scenarios is similar to the 
discussion for overlap. One can even define decisions in free space from 
overlap: A decision is taken at a time where overlap changes. Thus, in some 
sense, it amounts to extend overlap from edges to vertices. 
From a practical perspective, one can again use any existing graph and the 
associated decisions at graph vertices. However, it is unclear what their 
actual meaning is. With additional modeling effort, one can integrate the 
definition of decision in constrained free space into the map creation pro-
cess. For buildings, for example, a decision edge could be represented as a 
polygon completely filling a crossing (see right-hand side of Figure 4). A 
decision is taken once a route crosses a different set of edges of this poly-
gon. 
While it is clear that in a street network every turn means some sort of deci-
sion, it is not clear whether any isolated decision comes up in maritime, 
pedestrian or plane navigation. Therefore, we think that one should be care-
ful in adaptation of this feature. 

3.5.  Mutual Interference of Quality Metrics 
In the previous subsections, we have presented several approaches to trans-
form the measures for generating alternative routes and alternative graphs 
to constrained free space scenarios. While we propose various possible ways 
for each of these measures, one should keep in mind that they actually form 
deep-rooted interwoven features. When changing overlap, one has to care-
fully think about what this means for decision edges and vice versa; local 
optimality can have a strong impact on the definition of both, decision edg-
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es and overlap. Furthermore, local optimization can bring bad alternatives 
into the limits given by the stretch. Figure E depicts the most important 
links between those measures. 

4. Conclusion 
In this paper, we first introduced various concepts in the area of alternative 
routes and alternative graphs as they have been invented for street net-
works. We showed how constrained free space can be transformed into 
graphs such that the classical algorithms designed for street networks 
would be applicable. As we explained, however, the semantic correspond-
ence of vertices and edges with real-world streets and crossings is not evi-
dent for constrained free space models, especially not, when they are auto-
matically generated. 
Therefore, we discuss the ideas from both worlds, alternative routes and 
alternative graphs, with which the quality of alternative routes has been 
measured in street networks in order to extract small sets of truly alterna-
tive routes or sufficiently small alternative graphs from the vast amount of 
possible alternative routes. We discuss methods of extending the classical 
quality metrics to constrained free space and balance their opportunities 
and limitations. 
Finally, we discuss that all of the numerous choices are interlinked and 
need to be considered together instead of in isolation. Choosing a map rep-
resentation has implications for the viability of measures such as overlap 
and decision edges, the maps themselves have impact on how these 
measures help in identifying useful alternatives, and changing one of the 
involved abstractions impacts the overall system. 
Therefore, we propose to discuss alternative routes in constrained free 
space scenarios in an application-dependent context. Many choices that 
might be reasonable for indoor navigation and computer games could be 
unreasonable for maritime navigation and airplanes. Still, we believe that 
our aim of integrating constrained free space scenarios into the area of al-
ternative route research will stimulate discussion and the development of 
novel and possibly universal ways of selecting alternatives. Additionally, the 
expected integration of complicated modes of mobility in intermodal navi-
gation (pedestrian, bicycle, mobile robots in production scenarios) illus-
trates the need for an integrated treatment of environments and alterna-
tives. 
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