
A Low-Dimensional Feature Vector Representation
for Alignment-Free Spatial Trajectory Analysis

Martin Werner
Mobile and Distributed Systems Group

Ludwig-Maximilians University München
martin.werner@ifi.lmu.de

Marie Kiermeier
Mobile and Distributed Systems Group

Ludwig-Maximilians-Universität München
marie.kiermeier@ifi.lmu.de

ABSTRACT
Trajectory analysis is a central problem in the era of big data
due to numerous interconnected mobile devices generating
unprecedented amounts of spatio-temporal trajectories. Un-
fortunately, datasets of spatial trajectories are quite difficult
to analyse because of the computational complexity of the
various existing distance measures. A significant amount of
work in comparing two trajectories stems from calculating
temporal alignments of the involved spatial points. With
this paper, we propose an alignment-free method of rep-
resenting spatial trajectories using low-dimensional feature
vectors by summarizing the combinatorics of shape-derived
string sequences. Therefore, we propose to translate tra-
jectories into strings describing the evolving shape of each
trajectory, and then provide a sparse matrix representation
of these strings using frequencies of adjacencies of characters
(n-grams). The final feature vectors are constructed by ap-
proximating this matrix with low-dimensional column space
using singular value decomposition. New trajectories can be
projected into this geometry for comparison. We show that
this construction leads to low-dimensional feature vectors
with surprising expressive power. We illustrate the useful-
ness of this approach in various datasets.

CCS Concepts
•Information systems→ Location based services; Ge-
ographic information systems; Data analytics; Nearest-
neighbor search;

Keywords
Trajectory, Moving Objects, Multi-modal Trajectory, Big
Data

1. INTRODUCTION
Every day, an enormous mass of positioning data is gener-

ated by smart phones, cars, and other mobile devices. How-
ever, without a way of structuring them, for example to say

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MobiGIS ’16, October 31-November 03 2016, Burlingame, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4582-8/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/3004725.3004733

whether some of these travelled paths are similar or not, this
huge data source is useless. Accordingly, there is a wide field
of distance measures which are optimized for comparison of
such spatial trajectories. Usually, trajectories are described
by a set of waypoints each given by a spatial point and a
time stamp, and each distance measure has its own way to
process these ordered sets of waypoints. From a theoretical
perspective, these many different distance measures emerge
as spatial trajectories can be seen as the elements of the
space of continuous mappings of the unit interval [0, 1] into
space. This space is infinite-dimensional and very compli-
cated, hence, various different sensible definitions of distance
exist. From a more practical perspective, the number of dif-
ferent distance measures can also be motivated by the gen-
eral complexity of these objects: some of the measures are
simple summaries over points, other measures use higher or-
der geometry concepts such as polygonal lines, some ignore
time, some treat time only with respect to the ordering of
points induced by time, and some make direct use of time.
From a very general perspective, we can also view many of
the various distance measures as different forms of the same
process: first, find correspondences between points and then
summarize distances of corresponding points.

The motivation for this paper stems from an observation
of human communication: when humans describe a path or
relate two paths with each other, they often do this in two
isolated domains: in the spatial domain, we give a rough
information about the trajectory. More detailed information
is given by describing shapes. As an example, consider the
following description: ”From here, go straight on for about
100 meters, then turn left and follow the street again for
about 100 meters...”. In this case the path is not described
by a set of way-points or only by first order spatial features
of points and distances. Instead a starting point is given
followed by successive shape descriptions of the path (e.g.,
second order spatial information).

This observation raised the question, how much informa-
tion we can extract from shapes alone. As a first step, we
therefore transform a trajectory into a sequence (string) of
discrete shape descriptors (characters). Note that these are
basically two discretizations: we map the relations of specific
pairs of points (e.g., neighboring points, points in relation
to the first point, ...) into a character from a finite alpha-
bet. Furthermore, we forget about the actual timestamps
and only keep the ordering of points for building shape se-
quences. For the shape description by characters, geometri-
cal characteristics like the length (“go on for 100 meters”) or
the direction (“go North” or “turn left by 90◦”) of sub-paths

can be used.
One of the most important advantages of this double dis-

cretization is the fact that we transforme the problem from
the continuous spatio-temporal domain into a fully discrete,
combinatorial domain. Similar to several approaches in bioin-
formatics and information retrieval, we can now try to com-
press the combinatorics of these sequences into a form which
allows for alignment-free comparison [14, 3]. Therefore, we
extract combinatorial knowledge about the relations of tra-
jectories from sets of training trajectories and derive a dis-
tance measure for trajectories that captures this learned
combinatorial knowledge.

Technically, we create low-dimensional feature vectors from
trajectories and then use a matrix approximation technique
based on singular value decomposition in order to separate
the interesting effects in a given set of trajectories from
the sampling error effects and show that this approxima-
tion leads to a translation invariant, noisy distance measure,
which is able to capture surprisingly much about trajectory
sets given that no spatial points or exact distances are used
in the distance measure. Furthermore, this distance is very
easy to compute as a matrix multiplication followed by a
distance of vectors. Of course, these shape distances can be
combined with spatial distances, for example the distance
between start points, end points, or median points. And
what is best: there is no temporal alignment to be computed
neither implicitly nor explicitly reducing the complexity for
larger sets of trajectories by a lot.

The remainder of the paper is organized as follows: Sec-
tion 2 sums up existing distance measures for spatial trajec-
tories. In Section 3, we presents the transformation of spa-
tial trajectories into shape sequences and introduce the cor-
responding distance measure derived from latent semantic
structure. Then, Section 4 presents classification examples
showing the usefulness and descriptive power of the proposed
methodology. Finally, Section 5 finalizes the paper and gives
hints on future work.

2. RELATED WORK
Trajectory Computing is a large field in spatial comput-

ing. The general question of trajectory computing is, how
trajectory data should be stored, analyzed and retrieved in
big data systems. Spatial trajectories are usually stored as
sequences of spatial points with associated timestamps, e.g.,
t = (p1, t1, p2, t2, . . . , pn, tn). This set of waypoints is then
usually assumed to be dense enough to allow for linear in-
terpolation, that is, the trajectory is not given by the set of
points, though it is stored in this way, it is rather given as
the linear interpolation of all of these points. This, together
with the fact that the points pi are spatial, also gives a good
distinction from time series. It is possible to use other in-
terpolation models such splines for trajectory interpolation,
however, several algorithms exploit the geometric simplicity
of linear segments.

Many distance measures for spatial trajectories have been
proposed and successfully used. An overview is given in [4]
and [12]. Among the most simple measures, we have the
closest pair distance, which is simply the minimal distance
between any pair of points from the two involved trajecto-
ries. This distance measure can be computed in quadratic
time. Similarly simple, trajectories with the same number
of samples sampled at the same points in time can be com-
pared by the Sum of Pairs distance, e.g., the sum of the Eu-

clidean distances of pairs of points. This distance measure
only needs linear time. In most cases, however, trajectories
are not in a suitable form for this distance measure and need
to be transformed into this form by interpolation increasing
the practical complexity into at least quadratic complexity.
In a similar fashion, the Hausdorff distance of sets can be
applied to trajectories. This distance is built from extending
the distance between points to a distance between a point
and a trajectory in the obvious way by taking the minimum1.
This distance between a point and a set is then varied over
the set to construct a distance between two sets. Another
distance of trajectories is given by the Fréchet distance. It is
very intuitive and can be efficiently calculated. It is defined
to be the minimal length of a leash connecting the owner of
a dog moving forward on the first trajectory with a dog fol-
lowing the second trajectory without ever going backwards.
While this distance makes implicit use of the time domain by
not allowing the dog and the owner to move backward, the
Dynamic Time Warping (DTW) distance makes the time
domain explicit: the distance is given as the sum over the
distances of corresponding waypoints. The correspondence
is calculated by associating the first points of both trajec-
tories and then proceeding either one step in one of those
trajectories or one step in both trajectories. From all of
these possible choices, the one is chosen which minimizes
the sum of the distances. This distance has proven to be
very useful in a lot of applications and allows for a lower
bound (LB Keogh and variants) for speeding up similarity
search in large databases [9].

A completely different approach is taken by three versions
of trajectory edit distances. The first version, Edit Distance
on Real Sequences (EDR), consists of transforming the idea
of Edit Distance directly to trajectories. This distance mea-
sure counts the number of point insertions, deletions, or
modifications needed to transform the one trajectory into
the other. A modification (or insert, or deletion) in this
context is needed if and only if the two matching points are
farther away from each other than a predefined threshold
ε. This distance measure has proven useful, but does not
fulfill all properties of a metric. However, Edit Distance
with Real Penalties (ERP) repairs this defect by assigning a
well-chosen penalty instead of an integer cost for edit opera-
tions. The third edit distance is known as Longest Common
Subsequence (LCSS) and allows for skipping over some of
the involved points while calculating the number of pairwise
sufficiently near points.

A third class of approaches is given by transforming tra-
jectories into a combinatorial object such as a set. For ex-
ample, all points can be assigned to a spatial region (e.g., a
Geohash cell) and trajectories can be represented as the set
of cells which are hit by trajectory points. The Jaccard set
similarity can be used as a similarity measure for trajectories
and can well be approximated by Locality Sensitive Hashing
(LSH) [7]. Furthermore, it is possible to compress these sets
into tiny objects called Bloom Aggregated Cell Representa-
tion (BACR) whose Jaccard distance can be approximated
and for which a lower bound is known [13].

1To be honest, one has to use the infimum as trajectories
are infinite sets. In practice, however, trajectory measures of
this style are approximated by taking minima and maxima
over the waypoints only. These variants are usually called
discrete.

(a) Global Direction (b) Local Direction (c) Length (d) Length Relative to Fixed
Starting Point

Figure 1: Shape features

3. SHAPE SEQUENCES AND LATENT SE-
MANTICS

With this paper, we propose a method of comparing tra-
jectories that lies between the last two categories: to some
extent, the order relation induced by time is used, but in a
mainly combinatorial setting.

Therefore, we first translate trajectories into sequences of
letters where each letter represents a local shape feature of
the trajectory. Then, the m-gram sequence of this sequence,
that is, the sequence of overlapping substrings of length m is
summarized by counting the number of such m-grams. For
a string encoding into an alphabet Σ, this creates a vector
with |Σ|m entries. For a set of N trajectories, these vectors
form a matrix with N columns and |Σ|m rows. This matrix
is quite sparse as for each trajectory only few of the columns
will be non-zero. We use a matrix generated in this way to
identify useful shape features for comparison.

Basically, the approach is divided into two phases: a train-
ing phase, in which the approach learns how to represent
specific aspects inside a trajectory dataset. At the end of
this phase, each training trajectory has been transformed
into a simpler form of a finite-dimensional feature vector.
Secondly, there is an online phase in which unknown trajec-
tories can be projected into the very same feature represen-
tation as derived in the first phase and where the Euclidean
distance can be used to compare the resulting feature vector
with other trajectories in this representation. The following
sections explain the construction more carefully and give
details on the steps involved in providing an alignment-free,
low-dimensional feature vector representation of spatial tra-
jectories.

3.1 String Encoding of Spatial Trajectories into
Shape Feature Sequences

The idea of shape feature sequences is to encode the tra-
jectories which are described as sequences of data points
by local geometrical characteristics. For this initial study,
we limit the discussion to two simple categories of shape
features: those derived from orientation and those derived
from length.

For features derived from orientation, a straightforward
encoding of a trajectory into a string is given by discretizing
the set of angles involved into finite regions as, for example,
given in Table 1. We chose to use sectors of equal size, eight
of these are used in the table. With this mapping from an-
gles to characters, there are two obvious ways of extracting
sequences of angles from trajectories: either globally (e.g.,
North, West, South, East) or locally (e.g., turning left, turn-
ing right, etc.). The two features are depicted in Figure 1(a)
and Figure 1(b), respectively.

For features derived from length, we propose two different

angle interval mapping
0◦ ≤ θ ≤ 45◦ A
45◦ < θ ≤ 90◦ B
90◦ < θ ≤ 135◦ C
135◦ < θ ≤ 180◦ D
180◦ < θ ≤ 225◦ E
225◦ < θ ≤ 270◦ F
270◦ < θ ≤ 315◦ G
315◦ < θ ≤ 360◦ H

interval (rel. lmax) mapping
0% ≤ l ≤ 12.5% A
12.5% < l ≤ 25% B
25% < l ≤ 37.5% C
37.5% < l ≤ 50% D
50% < l ≤ 62.5% E
62.5% < l ≤ 75% F
75% < l ≤ 87.5% G
87.5% < l ≤ 100% H

Table 1: Orientation-, and length-based mapping
relative to a predefined maximal length lmax

encodings: Either, we encode the length of each segment
of a trajectory as illustrated in Figure 1(c) or we use the
distance from the starting point of the trajectory to the end
point of the current segment as depicted in Figure 1(d).
The intuition for the last perspective on length is given by
the fact that this measure captures a mixture of distance
and orientation: If a character in the sequence is coming
twice, we have been moving roughly along circle around the
starting point. If the character “increases”, we have been
moving away and if the character “decreases” we are going
towards the center. In this sense, this measure captures a
mixture of orientation and distance.

There are arbitrary many additional ways of transforming
a spatial trajectory into a string representing some partial,
local geometry of the trajectory. For example, one can use
first or second order derivative features (e.g., speed, turn
rate, and similar). These can be chosen based on intu-
ition depending on the application or on evaluation results
of application-dependent measures of success. For the pur-
pose of this paper, the simple features based on length and
orientation, however, are sufficient.

In practice, we need to preprocess the given spatial trajec-
tories in order to remove uninformative samples. Therefore,
the Douglas Peucker algorithm is being used. Then, the tra-
jectory is transformed into a sequence of characters modeling
certain aspects of the temporal evolution of the trajectory’s
shape as described.

3.2 Feature Vector Representation of String
Encodings

For this dataset of strings, we extract all overlapping se-
quences of m-grams and encode those in a sparse matrix
by counting the number of occurences of a specific m-gram
in each trajectory. Thereby, a trajectory is represented by a
vector with |Σ|m entries, where Σ denotes the alphabet used
for string encoding.

This creates an |Σ|m-dimensional vector for each trajec-
tory. Note that this transformation reduced the situation
from a high-dimensional problem into a problem of constant
and comparably small dimension |Σ|m. The global order-

ing information of the trajectory has been removed while
local ordering information (e.g., m-gram frequencies) has
been retained. Though this is a great step towards low-
dimensionality, these vectors still contain too much “noise”.
Note, however, that if we can derive meaningful feature vec-
tors from these intermediate vectors, a global alignment of
trajectories is neither implicitly nor explicitly calculated re-
sulting in better scalability as compared to many trajectory
distance measures.

The situation that frequencies are important, but not all
frequencies and patterns directly contribute to a result, is
also observed in the field of information retrieval and bioin-
formatics. For information retrieval, the ordering of terms
in a document provides information, but not each and every
neighborship of words means something; for bioinformatics,
the ordering of amino acids provides information, but not
each and every pair of neighbors.

One way to amplify the effect of important frequencies
and reduce the influence of the other frequencies is given by
latent semantic indexing in its various forms. In general,
the frequency vectors of a training set of trajectories are put
into the columns of a sparse matrix M . For this matrix,
a singular value decomposition provides a way to extract
meaningful features. Essentially, a construction will be used
which implicitly extracts associations of information from a
rank-reduced version of the original matrix. Using the sin-
gular value decomposition, the matrix is reconstructed by a
matrix M̂ of lower rank that is as near as possible to the
original matrix M , but with a column space of reduced di-
mensionality [1]. This reduction in dimensionality allows for
concentrating a given model on finding the relevant aspects
and associations between m-grams. The central advantage
of this approach is that there is no alignment anymore. The
sequences are transformed into vectors or matrices and sim-
ilarity is further expressed in simple terms as a distance
between vectors. For a new trajectory, there are only two
things that need to be done: Extract the frequency vector
and project it into a form suitable for the matrix approxima-
tion M̂ . Then, it can be compared to all other trajectories
processed so far by a simple distance measure of vectors such
as the Euclidean norm. As all dimensions are constant and
chosen beforehand by selecting m and Σ, this transforma-
tion is possible in linear time with respect to the length of
the trajectory.

3.3 Training Phase
The vectors generated from m-gram frequencies of shape

sequences are combined into a matrix M with |Σ|m rows and
N columns. We could now try to use these frequency vectors
for comparing trajectories and calculate the Euclidean dis-
tance between column vectors of this matrix M . However,
this matrix does not only cover the interesting aspects for
differentiating between the columns of this matrix and their
associated trajectories, but also a lot of noise. The solution
is here to control the amount of information that the linear
map given by this matrix is allowed to use. Therefore, we
perform a singular value decomposition of M :

M = USV t

with U and V unitary matrices and S a diagonal matrix of
the singular values of M in decreasing order [3]. From this
information, we construct an approximation to M with k-
dimensional column space by setting Ŝ = (σ1, . . . , σk, 0, . . . , 0)

for some fixed small value k and calculating

M̂ = UŜV t

Note that this matrix has the same dimensionality as M ,
but only a k-dimensional column space and rank at most k.
Along with this matrix, we can define a projection P map-
ping a column of occurrences of m-grams into the reduced
form suitable for column-wise comparison with the matrix
M̂ :

P = UŜS−1U t

This now provides a model in which similarity between tra-
jectories and training trajectories will be measured by the
Euclidean distance of vectors of m-gram frequencies pro-
jected by P .

3.4 Choice of Parameters
The proposed methodology as described in the previous

section needs three meta parameters: the ε error threshold
for Douglas Peucker, the number k of dimensions for the
rank of the matrix approximation M̂ , and the number m of
adjacent characters in the m-gram counting.

The ε error threshold for Douglas Peucker simplification
controlling how much we simplify a trajectory controlling
the number of letters in the strings and the column space
dimension k of the matrix approximation M̂ .

The first value ε can be set from domain knowledge in
many cases covering the expected measurement noise. How-
ever, for trajectory classification, we can set this value from
cross-validation choosing the one value of ε for which the
success rate (or another performance measure for classifica-
tion) is best.

For the second parameter k, one should note that a small
value of k leads to less expressive models, while high values
of k lead to a model with sufficient capacity to also model
a sampling error of the dataset and suffer from overfitting
training examples.

While we can also try to set this value from cross-validation,
Everitt and Dunne proposed the following heuristic, which
greatly reduces the complexity of setting this parameter k
[2, 6]. In their formulation, we shall use a dimensionality k
such that their relative variance vi according to the follow-
ing formula is smaller than 0.7/n, where n is the number of
training examples [11].

vi =
σ2
i∑
i σ

2
i

One should remark, that this can be set without an application-
specific quality measure such as success rate in classification.
For our example applications, however, much lower dimen-
sionalities were sufficient. Consequently, we propose to set
this parameter also from an application-dependent metric.
For classification, for example, we used a simple success rate
estimation.

3.5 Basic properties
The construction described so far leads to a system which

is capable of transforming a spatial trajectory into a feature
vector capturing a specific learned aspect of the trajectory
shape. These feature vectors can then be compared using
Euclidean distance, as we will show in the evaluation for two
application examples.

Still, this construction has several useful theoretical prop-
erties, which we collect in this section. Firstly, the construc-
tion leads to a distance measure that is nearly a metric. It
provides a non-negative, symmetric function. Only the iden-
tity of indiscernibles is broken, as different trajectories can
lead to identical feature vectors.

From a geometrical perspective, this construction inherits
geometric invariants of the shape sequence encoding. For
all feature sequences described here, it will be translation
invariant. So a trajectory will have zero distance to all of its
translations. For local orientation, it will also be rotation
invariant.

From a data quality perspective, we also see good features:
The construction is quite stable with respect to outliers, as
they only affect a limited amount of adjacencies including
the outlier. The rest of the frequencies can dominate as long
as there are enough inlier points. Partially, the construction
is also stable with respect to noise, especially when the train-
ing matrix is extended by noise. For example, we can boost
a given training set by copies of the training set perturbed
by noise in order to combat noise in incoming trajectories.

From a scalability perspective, the system is by an order
of magnitude faster than many other distance measures, as
it removes the intermediate step of alignment and replaces
it by matrix multiplication. Therefore, after training a ma-
trix M , the comparison complexity is linear in the length of
the trajectory. The most complicated operation for train-
ing is given by the singular value decomposition. However,
randomized linear algebra (RandMLA) provides very fast
approximate singular value decompositions, which only gen-
erate the largest k singular values [5]. We used Randomized
SVD using a specific form of column sampling for larger ex-
periments [8].

4. EVALUATION
Distance measures for trajectories are difficult to compare

with each other as every distance captures a different aspect
of the overall relation. In this situation, distance-based ap-
plications such as classification are often used to show the
usefulness of an approach. Therefore, we present two-class
and many-class classification results to illustrate the descrip-
tive power of the presented approach. In this section, we
choose m = 3 (i.e., 3-grams) for all evaluations.

4.1 Player Team Detection
The first test for our model is based on a trajectory dataset

sampled from five players playing the ego shooter Urban
Terror in a map called “Prague”. From these traces, we
extracted the beginnings of trajectories for both teams by
using the first 128 samples representing 6.4s of playing time.

Our goal for this sample problem is to identify the team
from translation invariant shape sequences alone. Figure
2(a) depicts the dataset of trajectory beginnings. The dataset
contains 276 different trajectories, 40% of the one team, 60%
of the other team. We start by choosing a random subset
of this trajectory dataset containing 150 trajectories from
both teams, apply Douglas Peucker algorithm with varying
values of ε and approximate the resulting frequency matrix
using different column space dimensionalities k. In the se-
quel, Douglas Peucker algorithm is being applied using a
threshold of 0.35 and the feature in use is global direction
unless otherwise stated.

From the 150 training matrices, 109 of the generated se-

quences are long enough for analysis. Sequences shorter than
5 characters have been rejected. Figure 2 depicts distance
matrices of the resulting feature vectors for the 109 training
trajectories for different dimensionalities ordered by team.

One can clearly recognize the two teams represented by
the four blocks of this distance matrix. Additionally, one
sees that a column space dimensionality of k = 1 is not
sufficient to extract enough information, that the teams in
the middle matrix can be distinguished from each other quite
good ignoring the noise and that for k = 6 the picture starts
getting worse, again. This is in line with the expectation
that a specific dimensionality is able to model enough of the
situation but rejects noise.

The matrix M̂ with 109 columns and 4096 rows has 50,826
entries, in other words 11.38% of the matrix are in use. In or-
der to combat the noise in the feature vectors, we assign the
class to an incoming trajectory from the remaining database
to be the class for which the mean of the distances for the
respective columns is smallest.

This results in a classification system capable of correctly
classifying 107 of the remaining test trajectories. Given 9
wrong classifications, the overall success rate is 92.24%. Fig-
ure 2 depicts the result of this classification: The gray lines
in the background show the training dataset, the blue and
green lines depict correctly classified trajectories from both
clusters and the red lines depict wrongly classified trajec-
tories. It is surprising that even with a one-dimensional
approximation, the success rate is 81.03% and that all di-
mensions between four and ten generate a success rate of
90.52%.

When replacing the feature global direction by local di-
rection, we see that the problem gets harder as the fea-
ture is now also rotation invariant. Consequently, we re-
port lower success rates of 56.03% for one dimension and
still a respectable 76.72% for dimensions between two and
ten. Beautifully, as depicted in Figure 2(b), the new addi-
tional errors are stemming from the fact that without a sense
of global orientation, it is impossible to distinguish the red
group of wrongly classified trajectories in the upper part of
the figure from the longer vertical trajectories of the lower
cluster.

The feature length, interestingly, does not learn something
useful. In fact, it converges into the trivial classifier assign-
ing the upper class in any case for a wide range of parame-
ters. In contrast, the feature length relative to fixed starting
point is able to classify 72.4% correctly using four dimen-
sions for the best choice of parameters.

In summary, all features except simple length were able
to extract interesting patterns, the best results were able to
be used from global direction with more than 90% success
rate. However, local direction performed also well taking
into account the rotation invariance of the feature and the
self similarity of the misclassified examples up to rotation.

4.2 Character Classification
While the results of the previous section are convincing

in that the proposed methodology is able to capture spe-
cific relevant shape features from shape sequences, it is not
clear, whether this observation generalizes to problems with
more classes. Therefore, we analyze the character trajectory
dataset in this section.

The Character dataset, available from the UCI Machine
Learning Repository, contains 2858 trajectories of 20 differ-

−1000 −500 0 500 1000 1500

−
50

0
0

50
0

10
00

15
00

X

Y

(a) global direction, k = 3

−1000 −500 0 500 1000 1500

−
50

0
0

50
0

10
00

15
00

X

Y

(b) local direction, k = 3

(c) k = 1 (d) k = 3 (e) k = 6

Figure 2: Distance Matrix of the Prague Training Dataset for Various Dimensionalities and Classification
Results (ε = 0.35)

ent hand-written letters captured from a pen on a digital
tablet [10]. The original dataset is given as the smoothed
derivative of the recordings. For the evaluation in this pa-
per, however, we integrate this dataset in order to capture
the shapes of the letters. Due to this preprocessing, all letter
shapes start at the origin. We use the first 1433 trajecto-
ries for building the training matrix and test classification
accuracy on the remaining 1425 trajectories.

Figure 3 depicts two training cases, their classification
scores as well as their classification results. While the first
example is wrongly classified as letter ’l’, this is perfectly rea-
sonable taking into account that we are matching sequences
of orientations after Douglas Peucker. You can see that the
vertical line in the middle is slightly open, as would be for
an ’l’. The second guess of the system was the correct letter
’a’, and even the third guess ’u’ makes sense given the shape,
as the right part of the letter forms a ’u’ and the left loop
only needs to be made tiny in order to make this letter per-
fectly look like a handwritten ’u’. These results have been
produced using a Douglas Peucker threshold of ε = 0.1 , a di-

mensionality of k = 7 and the feature global direction. The
second example shows that some quite ambiguous shapes
can be distinguished. The letter is correctly classified as an
’h’ and followed by ’w’ according to the scores.

For the given configuration, Figure 4(a) depicts the dis-
tance matrix of the columns of the approximated training
matrix M̂ . You can clearly see that some letters share shape
structure such as ’a’, ’u’ and ’l’. However, the matrix covers
quite well the distiction between the shape of ’o’ and ’n’ or
’b’. The letter ’o’ is most similar (in this approximation) to
the letter ’e’, which is plausbile from nearly identical hand
movement resulting in nearly identical shape sequences.

We performed a numerical evaluation on the testsets for
varying parameters ε and k. For this evaluation, again, only
correct predicitions are being taken into account. Hence, the
case depicted in Figure 3 counts as a wrong classification.
The results are depicted in Figure 4.

One can clearly see that for this problem with 20 classes,
a small column space dimensionality degrades the ability of
the system in finding good correlations for explaining shape

−10 0 10 20

−
20

−
15

−
10

−
5

0

Sample Data from Class a

x

y

(a) Training Case

0 200 400 600 800 1000 1200 1400

0
2

4
6

8

Example classified as l

Index

di
st

ve
c

A B C D E G H L M N O P Q R S U V W Y Z

(b) Mean Scores

L A U R V Q H Y C G B S E M P Z D N

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Classification

−20 −10 0 10 20 30

−
50

−
40

−
30

−
20

−
10

0

Sample Data from Class h

x

y

(d) Training Case

0 200 400 600 800 1000 1200 1400

0
2

4
6

8

Example classified as h

Index

di
st

ve
c

A B C D E G H L M N O P Q R S U V W Y Z

(e) Mean Scores

H L M U N R V B Q Y P A G C S E Z D O

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(f) Classification

Figure 3: Two character training cases, their mean scores and their classification result.

sequence differences. On the other hand, when dimensional-
ity grows, the steepness reduces to a nearly flat shape. From
k = 6 on, there is only marginal fluctuation in the success
rate. This means, that the capacity of the approximation
of M by M̂ is sufficient for k = 6 or k = 7 and that the
remaining errors are due to other effects. Note that one
should choose a smaller dimensionality in the range of good
performance, as otherwise overfitting effects might destroy
generalization capabilities. We have already seen this effect
for the Prague dataset in Figure 2(e). It is worth noting
that for small choices of ε, higher success rates can be mea-
sured by using quite high dimensionality (e.g., more than
10 dimensions). This is interesting, but outside the scope of
this paper with which we want to represent trajectories in
low-dimensional geometry. Additionally, such a small value
of ε would capture not the global shape of a letter but rather
details in a millimeter scale. Therefore, we think that these
high numbers are observed from overfitting to the specific
writing style in the dataset.

A very good performance of 74.2% correct predictions for
reasonable dimensionality (k = 7,ε = 0.1) was reached. As
already shown in the example, however, some of the wrong
predictions occur due to similarity of shapes. Therefore,
Figure 4(c) depicts the fraction of examples in which the
correct class was among the top k classes. For a consider-

able fraction of the 25.8% of wrong predictions, the correct
prediction is among the top 3 predictions. Counting the fact
that a letter is among the top 3 predictions of the system as
a success, the success rate for the given configuration rises
to 90.4%.

5. CONCLUSION
With this paper, we have proposed a highly scalable dis-

tance measure for spatial trajectories and illustrate its use
in classification scenarios. The distance measure is based on
transforming trajectories into strings and defined by ana-
lyzing their combinatorial structure. The system performed
extremely well on a small problem with trajectories of simi-
lar shape from a computer game and was also able to extend
to many classes (e.g., 20) in the character dataset.

The way of measuring distance is inspried by human path
descriptions. This leads to highly scalable and efficient sim-
ilarity measures for spatial trajectories. A central feature of
this approach is the fact that no sequence alignment takes
place. Consequently, the model can be applied over very
large databases or even data streams without pairwise align-
ment. The most important drawback of this approach is the
need of a training matrix containing examples of interesting
trajectories. However, this can also be seen as a feature,

(a) Distance Matrix for the Character
Training Matrix (ε = 0.1,k = 7).

2 4 6 8 10

0
20

40
60

80
10

0

Dimensionality

S
uc

ce
ss

 R
at

e
[%

]

eps = 0.05
eps = 0.10
eps = 0.20
eps = 0.30

(b) Dimensionalty vs. Parameter

Top 1 Top 2 Top 3 Top 4 Top 5

Correct Prediction in Top k Predictions

S
uc

ce
ss

 [%
]

0
20

40
60

80
10

0

(c) Number of Times the Correct Pre-
diction is in the Top k Predictions

Figure 4: Performance on character trajectories for varying paramters

because it is impossible to describe “everything” that makes
up a high-dimensional object such as a spatial trajectory in
a low-dimensional feature space.

This observation opens up the approach for future re-
search: for example, training data can be boosted by care-
fully adding noise to the samples. This is especially relevant,
when trajectories are created from noisy measurements. We
expect that this approach could reduce the amount of ran-
domness in the training distance matrices a bit.

Another question is with respect to the proposed shape
sequences: first of all, there are numerous other reasonable
ways of transforming trajectories into strings, which could
be able to capture other features in trajectory databases.
For example, speed and relative measures to a fixed point
(e.g., home) could be interesting in personalization and ac-
tivity recognition contexts. Furthermore, several matrix ap-
proximations M̂ for different shape sequences can be com-
bined by voting or, possibly, by extending the vectors of
M by stacking the various matrices below each other before
singular value decomposition.

Furthermore, one could train committees of approxima-
tion matrices M̂i to resolve global ambiguitues. For the
character example, one could use the presented model to
weight the outcome of one against all other models or of
models trained for often confused groups of characters.

It is futher worth noting that the low-dimensional col-
umn space can actually be used to project feature vectors
into such low-dimensional space by using the matrix U of
the singular value decomposition. This is a useful way of
spatially visualizing the capabilities of a training matrix in
distinguishing objects as well as relating a novel objects to
the training objects.

6. REFERENCES
[1] M. W. Berry, Z. Drmac, and E. R. Jessup. Matrices,

vector spaces, and information retrieval. SIAM review,
41(2):335–362, 1999.

[2] B. Couto, A. Ladeira, and M. Santos. Application of
latent semantic indexing to evaluate the similarity of
sets of sequences without multiple alignments
character-by-character. Genet Mol Res, 6(4):983–999,
2007.

[3] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K.
Landauer, and R. Harshman. Indexing by latent
semantic analysis. Journal of the American society for
information science, 41(6):391, 1990.

[4] K. Deng, K. Xie, K. Zheng, and X. Zhou. Trajectory
indexing and retrieval. In Computing with spatial
trajectories, pages 35–60. Springer, 2011.

[5] P. Drineas and M. W. Mahoney. Randnla: randomized
numerical linear algebra. Communications of the
ACM, 59(6):80–90, 2016.

[6] B. Everitt and G. Dunn. Applied multivariate data
analysis, 2nd edn. arnold, london. Technical report,
ISBN 0-340-54529-1, 2001.

[7] A. Gionis, P. Indyk, R. Motwani, et al. Similarity
search in high dimensions via hashing. In VLDB,
volume 99, pages 518–529, 1999.

[8] N. Halko, P. Martinsson, and J. Tropp. Finding
structure with randomness: stochastic algorithms for
constructing approximate matrix decompositions.
URL http://arxiv. org/abs/0909, 4061, 2009.

[9] E. Keogh and C. A. Ratanamahatana. Exact indexing
of dynamic time warping. Knowledge and information
systems, 7(3):358–386, 2005.

[10] M. Lichman. UCI machine learning repository.
http://archive.ics.uci.edu/ml, 2013.

[11] M. E. Wall, A. Rechtsteiner, and L. M. Rocha.
Singular value decomposition and principal component
analysis. In A practical approach to microarray data
analysis, pages 91–109. Springer, 2003.

[12] M. Werner. Indoor Location-based Services -
Prerequisites and Foundations. Springer, 2014.

[13] M. Werner. Bacr: Set similarities with lower bounds
and application to spatial trajectories. In Proceedings
of the 23rd SIGSPATIAL International Conference on
Advances in Geographic Information Systems, 2015.

[14] H.-J. Yu and D.-S. Huang. Normalized feature vectors:
a novel alignment-free sequence comparison method
based on the numbers of adjacent amino acids.
IEEE/ACM Transactions on Computational Biology
and Bioinformatics (TCBB), 10(2):457–467, 2013.

