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Abstract. Modern databases tailored to highly distributed, fault tol-
erant management of information for big data applications exploit a
classical data structure for reducing disk and network I/O as well as
for managing data distribution: The Bloom filter. This data structure
allows to encode small sets of elements, typically the keys in a key-value
store, into a small, constant-size data structure. In order to reduce mem-
ory consumption, this data structure suffers from false positives which
lead to additional I/O operations and are therefore only harmful with
respect to performance. With this paper, we propose an extension to the
classical Bloom filter construction which facilitates the use of floating
point coprocessors and GPUs or additional main memory in order to
reduce false positives. The proposed data structure is compatible with
the classical construction in the sense that the classical Bloom filter can
be extracted in time linear to the size of the data structure and that
the Bloom filter is a special case of our construction. We show that the
approach provides a relevant gain with respect to the false positive rate.
Implementations for Apache Cassandra, C++, and NVIDIA CUDA are
given and support the feasibility and results of the approach.
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1 Introduction

Nowadays, the Internet has become one of the most important information hubs
of our societies. While in the past, the Internet was used mainly as a source of
information, it is becoming more and more a hub for user-generated and sensor
data. The Internet-of-Things paradigm envisions that more and more devices of
daily life transmit information to the Internet and consume information retrieved
over the Internet for flexible service delivery.

Due to the wide adoption of large-scale cloud computing approaches in data
management and due to the rise of “NoSQL” databases for solving the problems
of management of large collections of data in a distributed way with linear scal-
ing, a lot of approaches have been discussed in order to index and manage the
high amount of data in a more flexible way. The data flow can be subsumed as
a process and the most important aspects for big data applications stem from
this data flow which can be enumerated as follows:

1. Data Collection: The process of moving the data into a big data infrastruc-
ture.
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2. Data Distribution: The process of distributing the data reasonably to several
instances for performance and error-tolerance.

3. Storage and Retrieval: The operations used to store and retrieve data from
persistent storage.

4. Searching and Indexing: The operations making data access flexible and
reasonably fast for applications.

5. Big Data Analytics: The area of analyzing the meaning of large datasets.
6. Visualization: The challenges of making these outcomes visible and under-

standable for humans.

It is estimated that the amount of data on the Internet doubles roughly every
two years and this data is the commodity of information society.

For adressing the first three challenges, a well-known data structure has been
used a lot: The Bloom filter. This data structure is able to model the containment
relation of variable-sized small sets with high accuracy, constant memory, small
computation cost, and some false positives. With respect to big data infrastruc-
tures, it has been widely used in order to be able to skip disk reads or network
transmission and manage access to information in key-value stores. With respect
to data distribution, it can be applied for set reconciliation between two large
datasets [5, 4]. With respect to data collection it has been widely applied to
network routing and related problems [13, 8].

With this paper, we provide an extension to the classical Bloom filter which
can be used in big data applications. The extension is able to use additional
memory in order to reduce the false-positive rate of a Bloom filter while the
underlying classical Bloom filter can be extracted easily. Additionally, our ap-
proach is based on using floating point calculations, which can be shifted to a
graphics card or other co-processor exploiting parallel computation capabilities.

We provide an implementation1 of our approach for the well-known NoSQL
database Apache Cassandra and highlight the performance from two perspec-
tives: A moderate increase in running time for key insertion is traded against a
higher rate of skipping irrelevant data blocks especially for data blocks for which
the number of elements stored is smaller than the expected number of elements.

The remainder of this paper is structured as follows: We first review the
needed background on classical Bloom filters in Section 2. Then, we detail our
extension to this construction, the “Gaussian Bloom Filter” in Section 3. In
Section 4, we evaluate our approach with respect to its false positive rate, the
number of bits used for floating point representation, the performance of our
implementation for the well-established key-value store Apache Cassandra, and
the performance of different variants implemented for the CPU and the GPU in
C++. Section 5 concludes the paper.

1 supplementary material is available at http://trajectorycomputing.com/gaussian-
bloom-filter/



2 Bloom Filter

The Bloom filter, introduced by B. H. Bloom in 1970, is a probabilistic data
structure for representing small sets of strings in a space-efficient way [3]. A
Bloom filter can be used to rapidly check if the underlying set contains a certain
element. A Bloom filter’s main asset is the absence of false negative filter results:
A Bloom filter will never claim that an element is not in the filter while it has
been inserted to the filter. But, a Bloom filter does report false positive results
stating that the underlying set contains the inquired element although it has not
been added. The amount of expectable false positive filter responses depend on
the filter’s configuration, mainly.

Bloom filters are a central element of several modern distributed systems
such as Google BigTable [6], Apache Cassandra [1], and even BitCoin [9]. Their
manifold application led to a lot of research investigating the specialization of
the basic variant towards specific application scenarios. Up to now, there are
counting Bloom filters, compressed Bloom filters, time-decaying Bloom filters,
stable Bloom filters, coded Bloom filters and several more [4, 10].

The basic filter itself consists of a binary hash field of fixed size supporting
the insertion of and querying for single elements. The following definition gives
the details.

Definition 1 (Bloom Filter). A Bloom filter is given by a binary hash field F
of fixed length m. Fix a set hi of k pairwise independent hash functions mapping
the universe U to the set m = {1, 2, . . . ,m}. In this situation, the following set of
operations defines a data structure describing sets. The empty set is represented
by an all-zero hash field F = 0.

1. Insert(F , e): Set all bits of F to the value 1, which are indexed by the results
of all k hash functions hi applied to the element e.

2. Test(F , e): Return true if and only if all bits in F , which would have been
set by the corresponding Insert operation, equal 1.

From this definition, one can see why a Bloom filter does not allow for false
negative filter responses but may report false positives: the test operation uses
k hash functions to check for the addressed bits being set to 1 – these are the
same k hash values the insert operation would have used to set those bits. So, if
there is only one position of the addressed bits F [x] = 0 the element could not
have been inserted into the filter. On the other hand, all tested bits could have
been set to one by the insertion of various other elements due to hash collisions.
In this case, the test operation would respond falsely positive.

Since false positive responses often lead to costly operations their occurences
should be minimized. But, the probability of false positives can be calculated.
Since all k hash functions are assumed to be pairwise independent, the prob-
ability of a false positive can be expressed as the probability that all k hash
functions hit a one for an inquired element. With some simplifications, this can
be approximated via the fraction of zeros in the filter.



The probability for a slot still being unset after evaluating one single hash
function is
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m
.

For the insertion of n different elements hashing is performed kn times since
every insertions uses k different hash functions. Therefore, the probability p for
a slot being zero after n insertions can be expressed as
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The probability of a false positive P (fp) can now be given as the complemen-
tary event to p since a false positive occurs if all k hash functions hit a bucket
“not being zero”:

P (fp) ≈ (1− p)k

To obtain the minimal false positive probability the first derivative of P (fp) with
respect to k is taken and set to zero resulting in an optimal parameter kOpt:

kOpt =
m

n
log 2.

This leads to a fraction of zero of
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1

2

and a false-positive probability of
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n log 2

≈ 0.6185
m
n .

An optimal Bloom filter configuration leads to roughly half of the bits being
zero and half of the bits will be one. This motivates from an information-theoretic
perspective that it is impossible to spill in more information into the hash-field:
The entropy in this case is maximal. The optimal configuration depends on the
number of elements being inserted, the size of the bit field and the number of
hash functions being used.

When thinking about the Bloom filter, one quickly realizes that only zero-
valued slots contribute information for reducing false-positives: A false-positive
is rejected, if at least one of the addressed cells is zero. From this observation, we
motivate our extension: We want to introduce more information into each “zero-
valued” slot, namely some information about the ordering of hash functions. In
this way, the surrounding fields store some information on which hash function
has actually set the enclosed bit. This helps to further reduce the occurence of
false positives since the test operation is now able to decide if a bit was set by
storing the inquired element or a different one and additionally reject some of
the false-positives in which the ones are addressed from different hash functions.
The following section gives details on this construction.



3 Gaussian Bloom Filter

For the construction of the Gaussian Bloom filter, we first replace all binary
slots of the hash field F with small floating point numbers. We further extend
the insert and test operation as follows:

Definition 2 (Gaussian Bloom Filter). A Gaussian Bloom filter is given by
a hash field F of fixed length m composed of small cells storing floating point
numbers. Fix a set hi of k pairwise independent hash functions mapping the
universe U to the set m = {1, 2, . . . ,m}. In this situation, the following set of
operations defines a data structure describing sets. The empty set is represented
by an all-zero hash field F = 0.

1. Insert(F , e): For each of the k hash functions hi create a Gaussian probability
density function

Ni = N (hi(e), i)

with mean µ = hi(e) given by the hash function value and standard deviation
σ = i given by the hash function index. With respect to the hash field F , we
set all entries to the maximum of the current value in the slot and the value
in the normalized signature function

Ñi =
Ni

max(Ni)

which attains its maximal value 1 at hi(e) and values between 0 and 1 else-
where:

F [t] := max
(
F [t], Ñ1(t), . . . , Ñk(t)

)

2. Test(F , e): Create the same normalized signature functions Ñi and combine
them into the element signature S by selecting the maximal value for each
slot.

S[t] = max
(
Ñ1(t), . . . , Ñk(t)

)

Return true, if and only if F [i] ≥ S[i] for all i ∈ m.

In this construction, the non-maximal slots contain information about the hash
function index of the one causing the value of the slot to have changed. For filters
with few elements, this can be a lot of information as a lot of non-maximal slots
are available to encode such information. Towards an optimally filled filter, the
number of available slots reduces.

Choosing the Gaussian kernel for this approach has several reasons: First
of all, any bounded function could have been used which can be parametrized
with an additional parameter encoding the index of the hash function. Choosing
a function which has a single maximum at the location indexed by the hash
functions, however, allows for easily extracting the underlying Bloom filter:



Definition 3 (Underlying Bloom Filter). Given a Gaussian Bloom filter
FG, the underlying Bloom filter FB can be retrieved by comparing all slots with
the maximal value M of the signature functions:

FB [i] = (FG[i] ==M)

This recovers the classical Bloom filter with identical parameters (size, num-
ber of hash functions) which would have been generated by directly using the
classical construction. This creates an important compatibility when it comes to
network applications: We can use the Gaussian Bloom filter without prescrib-
ing its use to other components of a distributed system. Moreover, we can use
the Gaussian Bloom filter only as long as it actually helps and the additional
memory is available.

One subtlety with this definition of the underlying Bloom filter is given by the
fact that the signature functions and the resolution and coding of the floating
point numbers must be chosen in a way such that no non-maximal cells are
rounded to the maximal value. Therefore, we propose to encode the numbers
in the cells of a Gaussian Bloom filter in a special way. However, when using
floating point processing units such as GPUs in order to perform the filtering
operations, keep in mind that rounding can become a problem introducing a
novel type of false-positives for the underlying Bloom filter.

Furthermore, the choice of Gaussian kernels can be motivated as making clear
the extension nature of our approach: In the space of distributions, the family of
Gaussian kernels with smaller and smaller standard deviation converges to the
Dirac distribution which is zero everywhere except at 0.

Finally, there are very good speedups for calculating an approximation to the
Gaussian function and the calculation can be localized in the array by calculating
the function only in a local neighborhood of several multiples of the standard
deviation around the indexed hash cells limiting the number of floating point
operations per hash function activation.

But before we start discussing implementation issues and scalability of the
given approach, we first fix some basic results on the filter, its performance and
its configuration.

3.1 Properties

In order to discuss the properties of the Gaussian Bloom filter, we start with
the following observation that the Gaussian Bloom filter does not allow false
negatives:

Lemma 1. The Gaussian Bloom filter has no false negatives.

Proof. At any point in time the filter structure is larger than the largest element
signature inserted. As the Test operation is based on comparing the signature
using greater than or equal to the filter, the query pattern can not be larger than
the filter in any slot unless the element has not been inserted to the filter.
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Fig. 1. Gaussian Bloom Filter rejecting a Bloom filter false positive.

The Gaussian Bloom filter allows for false positives just as a Bloom filter
does. However, a Gaussian Bloom filter false-positive implies a false positive for
the associated underlying Bloom filter.

Lemma 2. The false positive rate of a Gaussian Bloom filter is smaller than or
equal to the false positive rate of a Bloom filter.

Proof. In the situation of a Gaussian Bloom filter false positive, all slots of the
filter are larger than the element signature pattern. This is especially true for
the slots, where this pattern attains its maximal value one. However, these slots
have been addressed by hash functions of other elements directly.

The following gives a concrete example of a situation in which a Bloom filter
reports a false-positive while the Gaussian Bloom filter is able to reject this case.

Example 1. Consider the following situation: Assume the element e1 with asso-
ciated hash values h1(e1) = 50, h2(e1) = 10, and h3(e1) = 30 has been added
to an empty filter. Assume further that the query element e2 has hash values
h1(e2) = 50, h2(e2) = 30, and h3(e2) = 10

This situation is depicted in Figure 1 on the left: Since all three indexed hash
addresses have been set, a Bloom filter returns true for element e2. A Gaussian
Bloom filter on the other hand returns false for the query element. It is able to
distinguish the hash functions that addressed the underlying filter index. The
right hand side of the figure shows how the query pattern differs from the filter
content. Namely, the encoded Gaussian functions for hash addresses 10 and 30
differ in their standard deviation. Therefore, the relevant bits must have been
set by different hash functions and, consequently, come from different elements.

Finally, we have to discuss how a Gaussian Bloom filter can be configured.
A central element of the analysis of the Bloom filter was the assumption of
independence of each bit of information used from other bits. However, in the
case of a Gaussian Bloom filter this independence does not exist anymore as
different hash values are used when rejecting false positives. Therefore, we are
left with the fact that the Gaussian Bloom filter is not worse than the Bloom
filter and have to use the Bloom filter analysis in order to choose the optimal
configuration in terms of size, number of hash functions, and number of elements.



0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Performance

Number of Elements

M
ax

. F
P

−
R

at
e

Full GBF
8 bit
4 bit

(a) m = 256, n ∈ {1 . . . 100}, k = 6

−3 −2 −1 0 1 2 3

0.
2

0.
4

0.
6

0.
8

1.
0

Parameter Value

V
al

ue
 o

f t
he

 D
is

tri
bu

tio
n

Fast Gaussian
Correct Gaussian

(b) Accuracy of the Fast Gaussian

Fig. 2. False-positive rate for small floating points and the accuracy of the fast Gaus-
sian.

3.2 Efficient Representation with Small Counters

Depending on the application domain and the way in which the floating point
calculations are performed in practice, it can become quite questionable, whether
the amount of memory for example by utilizing single or double precision floating
point numbers is reasonable. Furthermore, it is unclear how to prevent rounding
up to the maximal value effectively. However, we provide a bit coding tailored
to the situation in which even small sizes of 4 bit per slot reach a similar false-
positive rate as compared to using an implementation based on an array of
double values.

In order to encode the floating point values efficiently into a small bit field
with t entries, we observe that only values between 0 and 1 need to be modelled.
Furthermore, we observe that the maximal value 1 definitely needs a unique bit
representation. We chose to model this maximal value by an array of t ones. If
the value is not maximal, then we are left with 2t − 1 bit combinations which
we can use. If we multiply the value with the following scaling factor, then usual
rounding will be as expected:

α =
2t − 1

2t

In order to obtain the final bit pattern representing the value, let each bit
model a fraction of two, the first bit models 1

2 , the second bit 1
4 , and so on. When

decoding from this representation, we first check for the distinguished pattern
for the maximal value, decode and rescale with α−1.

In order to evaluate the efficiency of the representation, three different filters
with equal random sets of elements of varying size are created and then queried
with 100 random elements, which have not been inserted into the filters. Figure
2(a) depicts the result of comparing the false-positive rate of a filter based on



full-sized double values as provided by the CPU compared to four bit and eight
bit representation. You can clearly see that there is only a small quality loss
in comparison between CPU double (bold line) and our binary representations.
This is due to the fact that our binary representation uses the bits more efficiently
by exploiting the domain limitation to modeling only the interval [0, 1]. As to
be expected, increasing the number of bits from 4 to 8 bit makes a difference: in
general, the larger bit slots tend to reject more false positives.

3.3 Efficient and Local Evaluation of Gaussian Function

For inserting an element to the Gaussian Bloom filter, we have defined to use
a Gaussian distribution with two variable parameters. In order to sucessfully
apply this in a big data environment with possibly large Bloom filters, we have to
optimize the situation into two directions: First of all, it is infeasible to evaluate
this function for each cell of the filter and, secondly, it is infeasible to evaluate the
correct formula for the Gaussian function containing the exponential function.

In order to be able to evaluate the Gaussian function for a smaller number of
slots, we observe that the tails of the Gaussian function attain zero after round-
ing quickly. We employ the “3σ-rule” which states that evaluating operations
involving the Gaussian functions can be skipped after three sigma due to ne-
glectible size of the function. Outside the interval [µ− 3σ, µ+ 3σ] the Gaussian
function is smaller than 0.0045, which is small enough to be neglected.

This step, in summary, makes the operations Insert and Test independent
from the filter size. They, then, only depend on the number of hash functions
used: For each hash function, the number of slots is determined by its index as
3σ determines the amount of slots being accessed. Therefore, the overall number
of hash field operations scales with the number of hash functions. Note that even
further reduction is possible at the cost of loosing some additional information by
imposing a maximal allowed standard deviation. This is especially useful when
very high standard deviations dominate too many cells of the filter removing
useful ordering information.

In order to be able to create the Gaussian Bloom filter quickly, we adopt
a well-known approximation to the exponential function consisting of a integer
multiplication, an addition and a binary shift. This method is due to Schraudolph
[11]. The speedup of this approximation is astonishing: In our experiments, this
implementation was about 30 times faster than the library routine of Java. Fig-
ure 2(b) depicts the Gaussian function as computed using the library exponen-
tial function compared to the Gaussian implemented using the fast exponential
function for the values from the interval [−3σ, 3σ] in which we actually use the
function. Note that outside this interval, the approximation quickly degrades.

4 Evaluation

This section evaluates our new data structure for filtering small sets using an
extension to classical Bloom filters with respect to the false-positive rate and in
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Fig. 3. Comparison of Bloom Filter and Gaussian Bloom Filter Performance (m = 256,
k ∈ {3, 5, 10} and n ∈ {1, . . . 100}).

comparison to the underlying Bloom filter. We performed a lot of experiments
with rather high false-positive rates by using small filters and medium numbers
of hash functions. These situations serve as example for larger filters with much
more elements to insert. In these experiments, a set of random strings has been
generated and either SHA-1 [7] or the Murmur Hash [2] have been used to
generate hash data. The different hash functions were generated using a different
prefix for the hash argument.

Figure 3 compares the Gaussian Bloom filter with an equivalent Bloom fil-
ter. In all these figures, the experiments were performed with random string
sets and varying parameters many times in order to generate the median perfor-
mance as the median of the instances measured false-positive rate. Additionally,
the first and third quartile area is shaded for both cases. In Figure 3 we see
that the Gaussian Bloom filter clearly outperforms the Bloom filter for filters,
which have enough zeroes. In the left figure, 256 slots were used together with
3 hash functions. The two figures to the right consider the same situation with
an increasing number of hash functions (k = 5, k = 10) which leads to more
ones in the filter and thereby less possibility to encode ordering information into
non-maximal slots. This results in the overall increasing false-positive rate for
both filters and the effect that the gain of the Gaussian Bloom filter relative to
the Bloom filter gets smaller.

As the gain for the Gaussian Bloom filter construction is larger for underfull
filter, we evaluate the false positive rate of a filter with respect to the number
of hash functions. Figure 4 depicts the false-positive rate for several situations
with different numbers of hash functions. We clearly see that the false-positive
rate of the Gaussian Bloom filter is smaller for the number of hash functions
and scales similar with the number of hash functions as compared to the Bloom
filter.

In summary, this supports the recommendation of using the standard Bloom
filter configuration for a Gaussian Bloom filter. If needed, one can also use a
slightly smaller number of hash functions for the Gaussian Bloom filter in order
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Fig. 4. The effect of the number of hash functions (m = 256, n ∈ {30, 50, 70} and
k ∈ {3, . . . 10}).
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Fig. 5. Performance of a 4-bit Gaussian Bloom Filter (m = 256, n ∈ {1 . . . 100} and
k ∈ {3, 4, 5}).

to reduce the amount of consumed hash bits. This is epecially important, if
hashing of the elements is time consuming, for example in file synchronization
applications.

As a third aspect, we have to discuss the performance of the Bloom filter with
4 bit floating point representations. We have already seen in Figure 2(a) that the
false-positive rate keeps comparable to a double-based filter for a fixed number of
hash functions. Figure 5 depicts the scaling behavior with respect to the number
of hash functions. This figure makes clear that the gain of the construction
is more sensitive to the number of hash functions as compared to the double
approach as the choice of using the hash index as the standard deviation leads
to the inclusion of equal non-maximal values in many non-maximal slots (e.g.,
the largest non-maximal value of the representation) which reduces the overall
discriminative gain of the Gaussian signature function. It can be seen that for k =
3 the positive effect is clearly visible, but it degrades more quickly for increasing
k ∈ {4, 5} as compared to the implementation using double values depicted
in Figure 3. In general, the smaller the number of bits in the floating point



representation, the fewer false positives can be rejected. However, the system is
keeping between the bounds given by a binary, classical Bloom filter and a filter
based on an error-free representation.

4.1 Gaussian Bloom Filter in Apache Cassandra

In order to test our approach in a real-world environment, we decided to extend
the open source Apache Cassandra database [1]. Apache Cassandra is based
on the Hadoop distributed file system (HDFS) [12] and has been created at
Facebook in order to tackle the inbox search problem. Up to the middle of 2011,
Facebook was using it for this task. Meanwhile, other large and widely recognized
Internet services started using Cassandra inside their backend systems for several
tasks including Twitter, Digg, Reddit and others.

From a technological perspective, Cassandra starts with the block-based
Hadoop distributed file system and manages a key-value store with which val-
ues can be put into the database and retrieved by giving a key. This data is
then organized into so-called SSTables and Bloom filters are used to keep track,
whether specific keys could be inside specific SSTables in order to reduce I/O.
Therefore, each time a key is inserted into an SSTable, the associated Bloom
filter is updated. We replace the classical Bloom filter of Cassandra with our
modified version and still keep track of the behavior of the original system by
managing a classical filter as an instance variable of our new filter. Therefore,
performance information from the stress test can not be used to compare the
filters, as they contain the overhead of calculating each operation for both fil-
ters. Cassandra uses a sophisticated Bloom filter subsystem in which filters are
dynamically reconfigured to match the amount of information that needs to be
indexed.

We performed experiments on a single-node cluster running our modified
version of Cassandra based on Version 2.0.4. We added a new mixed filter con-
taining the Gaussian Bloom filter as well as a copy of the original Bloom filter
implementation. Furthermore, logging code has been added to track the perfor-
mance of each individual Bloom filter operation. For Cassandra, the Bloom filter
false positive rate can be configured and we set it to 10% for the experiments in
order to have many cases in which both filters will fail in order to reliably count
the number of cases in which the Gaussian filter outperformed the classical filter.
We logged for a complete run of the default Cassandra stress test the number of
situations in which either of both filters was able to reject a false positive with
the expected outcome that the proposed Gaussian Bloom filter have no addi-
tional false positives and rejects several false positives which kept undetected
by the classical Bloom filter. The stress test consists of first writing one million
keys into the database, then recalculating all filters using nodetool scrub and
finally reading one million random keys back from the database.

During this evaluation on a single-node cluster, 23 Bloom filter were gen-
erated out of which nine were used in order to manage the stress data. The
remaining filters were managing organizational key spaces and registered only
few operations. Table 1 collects the number of situations in which both filters



Filter Bloom SSTable Reads Gaussian SSTable Reads Fraction
1 263,937 141,598 0.54
2 625,879 524,120 0.84
3 639,631 539,161 0.84
4 1,230,417 1,163,531 0.94
5 440,584 336,882 0.76
6 271,404 146,835 0.54
7 255,446 138,246 0.54
8 305,535 172,626 0.56
9 260,190 138,611 0.53

Total 4,293,023 3,301,610 0.67
Table 1. Numbers of SSTable reads for each filter during the stress test

were unable to skip an SSTable read. This includes positives as well as false
positives.

In summary, our novel data structure of a Gaussian Bloom filter was able
to skip 991,413 additional SSTable reads as compared to the equally configured
Bloom filter, an overall gain of 33% on average. Furthermore, one observes that
the reconstruction of Bloom filters in the middle of the experiment before start-
ing reading leads to similar gains of nearly 50%. That is, when the database is
restructured and no new data arrives, our structure – with the default configu-
ration of Cassandra – outperforms the given data structure by rejecting 50% of
the SSTable reads not rejected by the classical Bloom filter.

The Bloom filter operation performance was also monitored by aggregating
the running time of the Insert and Test operation for both, the original Bloom
filter and the modified Gaussian Bloom filter. As is to be expected, the Gaussian
Bloom filter needs more computations, but still moderately. For the stress test,
we observed an increase in running time for the Insert operation by 42%. This
is due to the fact that the classical Bloom filter does only access the indexed
bits while the Gaussian Bloom filter has to access many more slots, especially
when many hash functions are in use such that large standard deviations occur.
For the Test operation, however, the measured overhead was only 8.82%. This
is due to the fact that testing can be stopped as soon as a single contradiction
occurs. This makes our filtering structure more sensible for database applications
in which the read-write ratio tends clearly to more reads than writes.

4.2 Performance of a GPU implementation

In order to further motivate the use of Gaussian Bloom filters, we completed
another implementation of Gaussian Bloom filters in C++, both for the CPU
as well as supported by the GPU via the NVIDIA CUDA programming model.

In this situation, the additional memory of the Gaussian Bloom filter al-
lows for full parallel access without any synchronization and therefore allows for
boosting the performance of the Gaussian Bloom filter even more. For the GPU
case, we create a thread for each hash function index and calculate the Murmur
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Fig. 6. Performance of various C++ implementations inserting 1,000 random strings.

hash inside the GPU. When this finishes, we create one thread for each slot of
the Bloom filter and fill in the original exponential function signature into each
slot. Note that this opens up the Gaussian Bloom filter construction to non-local
kernels, for which all slots have to be calculated and no optimization comparable
to the three sigma rule is available.

Figure 6 depicts the performance of this approach. It shows the time in
seconds which is used to insert thousand random strings into a filter. The imple-
mentations are pure CPU with and without three sigma rule, the GPU variant,
and a bit-packing filter. Note that all implementations except the CPU version
without three sigma rule are reasonably fast and scale linearly with the amount
of hashing. The small peaks show situations in which the Murmur hash was more
complex based on the data. It is interesting that this peak can be observed in all
implementations while it is much smaller for the GPU. This is due to the fact
the even the calculation of the d hash functions is performed in parallel on the
GPU.

The GPU implementation results in several welcome facts: Firstly, the ad-
ditional memory overhead is not taken from system memory, instead, system
memory consumption is reduced as the filter memory is on the GPU. Secondly,
the CPU is free for other operations while the hashing and calculation is deferred
to the GPU and, finally, exploiting the strong parallelism of typical GPUs allows
for calculating kernels globally over the complete hash field and opens up the
construction for more complicated kernels.

In order to show the reduction of CPU demand, we performed an experiment
on a desktop computer (Intel Xeon E5620 @ 2.4 GHz, 2 CPUs, NVIDIA Quadro
4000, 256 CUDA cores, Windows 7) as follows: Eight threads are started per-
forming a typical workload of randomly generating 1012 integer numbers, sorting
them and reversing their order in a best effort manner while another thread is



performing 400 insertions into a Bloom filter per second using 50 hash functions
and 10,000 slots. This resulted in 1.18 ·1018 integer workloads completed after 10
seconds for the CUDA implementation compared to 1.15 · 1018 for the Gaussian
Bloom filter on the CPU and 1.14 · 1018 operations for the binary Bloom filter.

In summary, this approach allowed to free up CPU performance and system
memory for applications while maintaining Gaussian Bloom filter in the graphics
card.

5 Conclusion

With this paper, we have proposed a novel approach to tuning the classical
Bloom filter construction. While the classical Bloom filter performance is optimal
when configured with the optimal values, a lot of real-world applications either
have to recalculate Bloom filters often or make use of Bloom filters that are
configured for many more elements than they actually contain most of the time.
In this situation, we propose to model additional information into the Bloom
filter data structure into the zero slots. This approach is an extension to the
Bloom filter in the sense that maximal values still recover the Bloom filter of the
same number of slots, the same hash functions and the same elements. However,
we make use of small floating point slots, which can encode from which index
of a hash function their value was most influenced. We show in theory and
practice that this Bloom filter variant can be used sucessfully. Even for the
modern database system Cassandra, which contains sophisticated techniques to
optimally configure Bloom filters during operation, a clear gain was visible.

One drawback of this construction is the additional space used to maintain
the small floating point numbers. Still, this memory can be on a coprocessing unit
such as a GPU freeing up primary memory and CPU capacity for applications.
Still, for storage-only backend systems, the additional CPU time and the amount
of RAM did not negatively impact the performance of the standard Cassandra
stress test of inserting and reading a million keys from a table. We suspect that
in many storage backends based on Apache Cassandra the additional amount of
memory and CPU is well-invested when the number of complete recalculations
of the Bloom filters can be reduced. This is an important direction for future
work which, however, can only be performed sensibly with real workloads for
the cluster and with a distributed cluster deployment.

The most important advantage consists, however, of the fact that unlike other
approaches to provide more efficient filter structures for small sets, our construc-
tion is compatible with the original structure and therefore with communication
protocols as the underlying Bloom filter can be extracted easily.
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