
BACR: Set Similarities with Lower Bounds and
Application to Spatial Trajectories

Martin Werner
Mobile and Distributed Systems Group

Ludwig-Maximilians University Munich, Munich, Germany
martin.werner@ifi.lmu.de

ABSTRACT
This paper proposes a length-independent feature represen-
tation of sets of strings based on Bloom filters called BACR
for similarity search in databases. Further, we show how
a Z-curve-based discretization of geospatial trajectories can
be used in order to search for similar trajectories in large
databases. Additionally to the already-known estimation of
the size of the union and the intersection of sets from Bloom
filters, we propose a way to calculate an upper bound for the
intersection and a lower bound for the union of sets. Conse-
quently, we show that the Jaccard distance and many other
similarity measures allow for a lower bound. This makes ex-
act similarity search on large databases of this type feasible.
Finally, we show that the Jaccard distance is incompati-
ble with the union of sets and replace the Jaccard distance
appropriately in a way such that even collections of sets of
strings can be represented with a single BACR feature vector
at least for similarity search applications. The algorithms
are thoroughly evaluated and motivated by real-world ex-
amples.

Categories and Subject Descriptors
H.2.8 [Database]: Database Applications—Spatial databases
and GIS ; H.3.1 [Information Storage and Retrieval]:
Content Analysis and Indexing

General Terms
Algorithm, Spatial Computing, Time Series, Trajectory Anal-
ysis

Keywords
Trajectory, Moving Objects, Multi-modal Trajectory, Big
Data

1. INTRODUCTION
Multi-dimensional and multi-modal time series experience

a more and more central role in the context of “big data”.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SIGSPATIAL ’15, November 03-06, 2015, Bellevue, WA, USA
Copyright 2015 ACM . ISBN 978-1-4503-3967-4/15/11
DOI: http://dx.doi.org/10.1145/2820783.2820802 ...$15.00.

Driven by the wide distribution of mobile devices equipped
with GPS sensors and by infrastructures providing simi-
lar location information inside buildings, large collections
of multi-modal time series data are collected and generated.
These datasets typically include GPS readings, phone call
data (e.g., call detail records), measurements in industry,
multimedia and social media data, web page data, and much
more.

While the treatment of pure spatial trajectories has been
studied well in the last decades [13, 5, 7, 16], the multi-
modal nature of trajectories – namely that they consist of
both spatial and non-spatial data in many applications –
generates a two-stage system, which runs into problems in
general. There exist proposals to index the keyword space
(e.g., everything except spatial coordinates) as a first level
index and index the spatial domain relative to that keyword
effectively building an inverted index mapping keywords to
spatial indexing trees, see [15] and references therein. Alter-
natively, one could try to generate a spatial index structure
in the spatial domain and use another technique in a second
step to also evaluate a query with respect to the keyword
space. Still, it is difficult for these indices (or even impos-
sible) to compress data in order to allow for querying very
large datasets.

This paper, however, proposes to relax the spatial domain
into a suitable discrete representation as sets leading to a
situation in which spatial similarity as well as similarity in
other modalities can be evaluated at the same time.

A widely used approach for solving this class of problems
relies on random projections and locality-sensitive hashing
(LSH) as introduced by Gionis et al. in 1999 [6]. Locality-
sensitive hashing schemes are known to exist in many sit-
uations, however, often only for approximate results. For
example, Broder et al. introduced Min-Wise Independent
Permutations for the Jaccard similarity of sets [3]. In this
context, a set h ∈ H of hash functions is selected and it can
be shown that

Pr (h(A) = h(B)) ≈ simJaccard(A,B)

In order to decrease the random effects from hashing, this
scheme can be iterated with different hash functions leading
to feature vectors (h1(A), h2(A), ...) and the Jaccard similar-
ity can be measured by counting coincidences between those
vectors.

Interestingly, many different set similarity coefficients have
been used in practice, [12, 11], however, not all of them sup-
port LSH scheme. This is due to a lemma of Charikar, which
proves that the existence of LSH for a similarity measure

This is a preprint of the paper M. Werner, BACR: Set Similarities with Lower Bounds and Application to Spatial Trajectories, in Proceedings of the 23rd ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL 2015), ISBN 978-1-4503-3967-4/15/11 Available at http://dx.doi.org/10.1145/2820783.2820802. For personal
use only.

1

sim(A,B) implies the triangle inequality for 1 − sim(A,B)
[4].

For this paper, a trajectory shall be any time series con-
sisting of samples which are vectors containing any mixture
of spatial coordinates, points in some metric space, or even
discrete values. Note that this definition is quite general.
It is intended to treat multimodal trajectories containing
labels in the same way as pure geometric trajectories.

This paper proposes a scheme in which general trajecto-
ries are suitably represented as sets and similarity is given
by one of the various set similarity measures, usually based
on the intersection, union, and size of sets. Concretely, this
paper proposes to represent general trajectories as sets of
strings and provides a data structure of constant size based
on Bloom filters in order to summarize each trajectory. Pos-
sibly the most important novel results of this paper are the
following: (1) A derivation of a lower bound for the Jaccard
distance of sets represented using Bloom filters, (2) a method
for quickly calculating the approximate Jaccard distance of
sets represented in this way, (3) a method for performing
exact nearest neighbor search on these sets represented as
Bloom filters with respect to the Jaccard distance, and (4)
a lower bounding method for nearest neighbor search with
respect to the Jaccard distance, which is compatible with
collections of sets of strings in which collections of sets can
be represented by a single feature vector.

While the last aspect is a central idea in many spatial
indexing structures for example based on trees, it is un-
available for the Jaccard distance, as there cannot exist a
straightforward mindist function for unions of sets under
the Jaccard distance as will be shown.

The remainder of the paper is structured as follows: In
Section 2, related work is shortly reviewed, in Section 3,
the Bloom Filter Aggregated Cell Representation (BACR)
is introduced, in Section 4, the subset relation is discussed,
in Section 5, methods to estimate the Jaccard distance are
developed and a lower bound is introduced for this. Section
6 shows how the lower bound can be adapted to the case in
which a BACR feature vector models several trajectories at
least for similarity search by using the Dice index. Section
7 shows results on synthetic and real datasets and, finally,
Section 8 concludes the paper.

2. BACKGROUND AND RELATED WORK
In this section, we first review approaches for indexing ge-

ometric trajectories. Then, we explain the Bloom filter data
structure. Further, we explain Z-curve codings, a technique
based on a space-filling curve with which geometric points
can be transformed into strings and with which we discretize
geometric or spatial components of the given trajectories.

2.1 Trajectory Indexing
Many different approaches have been discussed in order to

index spatial trajectories. For example, spatial index struc-
tures for points have been augmented in order to also cover
the special time domain of spatial trajectories. Addition-
ally, spatial indices for various timestamps are maintained
and the relation between consecutive indices in time is mod-
elled.Thirdly, a regular grid is being used in order to reduce
the complexities induced by good indexing structures for
points. A good introduction to this area has been presented
by Deng et al.[5].

All these approaches lack direct support for non-spatial

and multimodal data. However, these are becoming more
and more important in reasoning applications, where data
analysis shall be applied to the additional, non-spatial at-
tributes of trajectories or trajectory segments.

2.2 Bloom Filter
The Bloom filter is a probabilistic data structure mod-

elling small sets of objects via hashing [1, 2]. Basically, a
Bloom filter consists of a hash field F of m binary slots.
First, a set {h1 . . . hk} of k pairwise independent hash func-
tions mapping objects (e.g., strings) to 1 . . .m is fixed. An
empty filter is represented by an all-zero hash field, inserting
an element e is done by setting all slots addressed by at least
one of the hash values to one (e.g., ∀i=1...kF [hi(e)] := 1). In
order to find out whether an element has been inserted into
a Bloom filter, one looks at the same slots and returns true,
if all slots contain a one (e.g., “e ∈ F”, if ∀i=1...kF [hi(e)] ==
1). The Bloom filter does not have false negatives, however,
it can have false positives, if the bits addressed by the hash
functions have been set to one by the insertion of other el-
ements. Still, the probability of false-positives is equivalent
to the probability of one of the k random hash function ad-
dressing a zero slot for a given element, which depends only
on the number of elements, the number of hash functions,
and the filter size. It is possible to optimally determine the
number k of hash functions out of a given number of ele-
ments and a given size of a filter and – conversely – it is
possible to calculate the probability of a false-positive given
the number of elements in the filter, the number of hash
functions and the size of the hash field in closed form [1].

2.3 Z-curve codings and the Geohash
The process of mapping coordinates in some d-dimensional

space into strings amounts to a mapping of the d-dimensional
space onto a one-dimensional discrete space. Space-filling
curves such as the Hilbert curve or the Z-curve can be used
for this projecting a space cell onto the time in the curve, the
Z-curve being very easy to calculate. For the two-dimensional
Z-curve, it is known that nearby spatial points tend to be
near after Z-curve coding, however, with several locations
where the opposite is the case. From an implementation per-
spective, the Z-curve coding can be generated by splitting
the space into square (cubic, ...) cells and bit-interleaving
the associated cell indices written in binary. The resulting
bit vector can be coded into a string using, e.g., BASE32,
which is then widely known as the Geohash [9, 14]. This
construction has several properties which are not explicitly
used throughout this paper, but which can be used by appli-
cations: It is, for example, possible to calculate the neigh-
boring cells given a geohash by some lookups in tables of
letters, it is – in general – very fast to encode and decode,
and it supports generalization by removing trailing charac-
ters: The geohash cell of a prefix of a string is a rectangle
containing the geohash cell as well as all other geohash cells
of the same prefix. These form a rectangle at anytime.

2.4 Lower Bounds in Similarity Search
One of the most important operations in similarity search

is the nearest neighbor search in which the nearest neighbor
of a query object q in a collection of objects C is to be found.
The trivial baseline algorithm would iterate over c ∈ C, cal-
culate the distance d(q, C) for each element, and remember
the smallest of these values dmin together with the object

c, where this value came from. The time complexity of this
process is O(n) and in practical cases, the time is dominated
by the n distance calculations.

In order to speed up this calculation, it is inevitable to skip
some of these calculations of distances. A lower bound is a
function, which assigns to each pair of objects c1, c2 ∈ C
a lower bound LB to the distance such that LB(c1, c2) ≤
d(c1, c2). Such a function can operate on the objects c1, c2
themselves or on some approximation or simplification of
them, T (c1), T (c2). Lower bounds are interesting for speed-
ing up nearest neighbor search if they can be evaluated sig-
nificantly faster than the original distance function. Because
then, for every element c ∈ C, the lower bound LB(c, q) is
calculated and the true calculation of d(c, q) is executed if
and only if LB(c, q) < dmin, possibly updating dmin.

It is sometimes possible to further increase the perfor-
mance: if a lower bound can be calculated for a collec-
tion G ⊆ C of objects, all these objects can be pruned if
LB(c, q) ≥ dmin with a single calculation of the lower bound.

This second approach can be used on tree indexing struc-
tures in which each inner node is described as a summary
object of all data below that node (e.g., a minimal enclos-
ing rectangle for the R∗ tree) in order to prune a substantial
part of the dataset organized in large subtrees. For data that
can be suitably represented in a tree, the average complexity
becomes sublinear, e.g., O(logn).

3. BACR: BLOOM FILTER AGGREGATED
CELL REPRESENTATION

The idea behind BACR is to use the memory-efficiency
of Bloom filters in order to increase the amount of data
that can be processed in memory for specific queries and
distance functions and thereby reduce the amount of time
needed to answer typical queries in situations, where spa-
tial index structures fail, either due to the inefficiency of
well-known aggregations including MBR-type (e.g., the R*
tree and variants) and SAX or due to the need of integrat-
ing nonspatial information into the index (e.g., the ID of
a vehicle, some discrete sensor status, etc.). Furthermore,
the BACR representation allows for jointly processing non-
local queries: When selecting trajectories that contain two
distinct places, classical indices face a problem: Either two
local range queries are executed independently from each
other and their results are intersected, or the smallest range
enclosing both places is being used for a very large search
space in which many elements have to be examined. The
random placement of information in a very short bit array
as provided by the Bloom filter, however, allows for jointly
querying for many different places with a constant amount
of work and without realizing possibly large intermediate
results or intersecting large sets.

Figure 1 depicts this situation: When querying for all
trajectories that meet both small dashed rectangles, a clas-
sical local index creates two sets, namely {A,B,C,D} and
{A,B,E, F} and calculates the result {A,B} as the inter-
section of these sets. Alternatively, it examines all trajec-
tories that meet the large dashed query area, which results
in examining all depicted trajectories. With the BACR rep-
resentation, the trajectories A and B can be identified as
fitting to the query in a single operation without needing to
create expensive intermediate results.

The BACR representation of some trajectory is derived by

A

B
C

D

F

E

Figure 1: Non-local queries for trajectories

Spatial Components

Discrete Components
COLD_OR_WARM
MODE_OF_TRANSPORT
USERNAME
GROUP
...

{s1,s2,...}

General Trajectory BACR
Representation

Transformation and
Union Summarization

Bloom Filter and associated
modulo compressions

Figure 2: BACR representations of trajectories

first transforming the trajectory into a sequence of sets of
strings using a suitable transformation T . For spatial trajec-
tories, we propose to use the widely known geohash Z-curve
coding while the index does not exploit properties of the
strings generated for pure spatial trajectories [9, 14]. These
strings are then inserted into a well-configured, small Bloom
filter. This idea of representing location sets as Bloom fil-
ters of geohashes has appeared in [10], but only support for
the baseline subset query has been discussed. Figure 2 illus-
trates this construction.

4. SUBSET QUERIES ON BACR
A simplification operation is usually introduced in order

to allow for approximate calculation of object relations or
in order to speed up other algorithms like similarity search
by providing bounds for the error type introduced by sim-
plification. But before the details get presented, some basic
queries will first be explained.

4.1 Baseline Exact Subset Query
A BACR representation of a trajectory supports a subset

query. This query is directly supported for two types of
query objects: a trajectory (alternatively any set of points)
or a BACR representation of a trajectory.

For the first case, every element of the trajectory gets
transformed using the transformation T , which has been
used in creating the BACR representation. Then, the Bloom
filter is tested using each single string T (pi) for a trajectory
t = (p1, . . . , pn). This approach allows for testing any given
set of points. Note that this query is only exact up to the
inherent error of the transformation T : a point meets a tra-
jectory if and only if there exists a point in the trajectory
that maps to the same string under T . For the geohash case,
this means that the trajectory meets the query geohash cell.
This approach to querying has the advantage that query pro-
cessing can be abandoned as early as the first contradicting
query point q is processed.

For the second case, we can use the fact that the Bloom
filter data structure directly allows for deciding whether a
Bloom filter models a subset of another Bloom filter. There-
fore, we check whether the database filter has been set to
one everywhere where the query filter contains a one. If this
is not the case, the query is rejected. In this case, we can
also speed up query processing in two different ways: we
can check the relationship of both filters on a subset of the
bit locations of the filter only, which is equivalent to using
smaller Bloom filters. Note that this query increases the er-
ror given by false positives. Alternatively, we can check all
locations and abandon the processing as early as we find a
zero indicating a contradiction.

4.2 Fast Exact Subset Queries
In order to query large sets of Bloom filters for relevant

subsets in a scalable way, we propose the following binary
search construction on filters based on recursive histograms
of fractions of zeros.

Definition 1
A histogram of fractions of zeros of length l, Hl

F is de-
rived from a Bloom filter F by splitting the filter into equal
parts of length l and assigning to a histogram slot i the mean

6/16

3/8 3/8

2/4 1/4 1/4 2/4

0/2 1/21/20/21/21/21/2 1/2

Figure 3: Pyramidal Histogram of Fractions of Zeros

of the i− th part, namely:

H(i) : =
1

l

l(i+1)−1∑

j=li

F (j)

= mean {F (li), F (li+ 1), . . . , F (li+ l − 1)}
With this definition, we can formulate a novel mechanism

to quickly reject BACR representations of which a given
query in BACR representation is not a subset:

Observation 1 (Pruning Rule)
Given Bloom filters FA, FB of equal configuration and their
associated histograms of fractions of zeros HA, HB of equal
length. Then

∃iHA(i) > HB(i)⇒ A * B

Using a histogram of length 1, we could, for example,
quickly prune large parts of the database based on a com-
parison of a single floating point value. However, this ex-
treme case does only cover the (probabilistically expected)
amount of elements inserted into the filter.

Currently, the choice of the histogram length is tricky:
When it is chosen too small, queries are fast, but the pruning
power is too low and the candidate set becomes large. Con-
versely, choosing a higher histogram length leads to higher
query time and unneccessary computation. Therefore, we
can refine this pruning approach by using an increasing his-
togram length recursively in a pyramid.

Definition 2 (Recursive Pruning Pyramid)
Given a database of Bloom filters Fi of length m = 2l a
power of two, create the index pyramid for each filter Fi

consisting of the following histograms of fractions of zeros:

H2l

Fi
, H2l−1

Fi
, . . . , H2

Fi
.

Given a query Bloom filter G, calculate recursively the pyra-
mid

H2l

G , H
2l−1

G , . . . , H2
G,

and reject candidates Fi using the pruning rule Observation
1.

Figure 3 depicts the pyramid construction of a Bloom filter
array with 16 bits. Black blocks represent bits that have
been set while white bits represent unset bits.

5. JACCARD DISTANCE ON BACR
The Bloom filter and especially the BACR representation

allows for more than just extending the element relation
of the set model to detecting subsets. Additionally, it is
to be expected that the subset relation is too strict when
processing trajectories in a fixed cellular subdivision: very
similar trajectories might occasionally meet different cells.
A single such cell would destroy any subset relation while
the similarity of the trajectories is still evident.

However, there are widely-used set similarity measures,
which measure the similarity of sets and not only their pair-
wise relations. One of the most widely known measures of
this type is the Jaccard distance.

The Jaccard distance is based on the Jaccard index, which
has a very simple definition as the quotient of the size of the
intersection and the size of the union:

simJaccard(A,B) =
|A ∩B|
|A ∪B|

It is a “good” similarity measure in that its converse is a
metric called Jaccard distance

dJaccard(A,B) = 1− simJaccard(A,B)

and in that it is the outcome of a very intuitive LSH scheme
as explained in Section 1. Furthermore, this metric takes
values in [0, 1], where 0 is attained for equal sets and 1 is
attained for disjoint sets.

5.1 Exact Jaccard Distance
It is straightforward to calculate the exact Jaccard dis-

tance of two sets of strings by calculating the intersection
and the union of both sets. In practice, both can be done
easily by maintaining a sorted version of the sets. However,
this approach suffers from large memory consumption in or-
der to store all sets as sets of their elements and from the
fact that sorting sets can be costly. In order to improve on
that, we show in the following that BACR supports approx-
imate and exact calculation of the Jaccard distance without
realizing each set of strings in memory and without sorting.

5.2 Approximate Jaccard Distance
Following an idea of Swamidass and Baldi [11], we can

estimate the number of elements in a Bloom filter as well
as in a union and an intersection knowing only the Bloom
filters and their configuration. This allows for queries based
on the estimated size of the union, the estimated size of
the intersection, and the estimated size of the involved sets
themselves. The intersection query can be used to find, for
example, all trajectories that have a certain spatial overlap
with each other measured by the number of cells in their
intersection.

Therefore, the number of elements that have been inserted
into a Bloom filter is estimated from the fraction of zeros as
follows:

nA ≈ − log(φFA)m

k

In this equation, nA denotes the number of elements of a
filter A, φFA the fraction of zeros, m the number of slots,
and k the number of hash functions.

Additionally, given two filters, their binary OR can be cal-
culated representing the union of two filters and the number

of elements of the union can be estimated:

EUnion = − log(φFA∨B)m

k

Extending on the previous results, we can use a simple set
identity to estimate the number of elements of the intersec-
tion of two filters using the estimated size of the union of
both filters: The number of elements of the union of two sets
is the sum of the number of the individual sets. However,
the elements of the intersection |A ∩ B| get counted twice,
once for the set A and once for the set B. We can correct for
this by substracting the size of the intersection once:

|A ∪B| = |A|+ |B| − |A ∩B| (1)

This easily translates to an estimator for the size of the
intersection as

EIntersection = nA + nB − EUnion

Using this, we can estimate the Jaccard distance of two
filters just from their filters as

EJaccard = 1− EIntersection

EUnion

We use this construction to calculate the approximate Jac-
card distance.

However, both Bloom filters used in these approximate
calculations could suffer from false positives. Therefore,
there is no suitable bound: the estimated results can be
both larger or smaller than the actual intersection. How-
ever, as the false positive probability can be controlled by
changing the filter configuration, so can the accuracy of these
approximations.

5.3 A Novel Lower Bound for the Jaccard Dis-
tance on BACR

The central element of the proposed BACR representation
is the idea of using the Bloom filter data structure as a sim-
plification operator S mapping a trajectory to a Bloom filter.
For spatial trajectories, we propose to use the well-known
geohash coding approach in order to first create a relatively
small set of strings representing a trajectory. Though we
have shown how to efficiently compute an approximation to
the Jaccard distance between two such filters, which com-
pletely relies on filters, this approach does not allow for exact
similarity search. The reason for this is that the estimators
of the number of elements can under- or overestimate the
number of elements of a filter due to the situation where
more or less hash collisions occur than expected.

However, with a minor extension to the data structure and
some minor limitation on the way of querying the database,
we can give a lower bound on the Jaccard distance for every
element of the trajectory database based on their BACR
representations. Therefore, the following restrictions have
to be taken into account, which can easily be guaranteed
in many application scenarios: (1) The correct number n
of different elements added to each filter is actually main-
tained and stored additionally to the Bloom filter and (2)
the correct set of strings for a query is known at query time.

The first restriction is easily fulfilled by extending the
BACR representation with a counter for each trajectory.
This is reasonable in most applications, however, the fil-
ter does not support adding elements to trajectories in an
online manner anymore without errors in this number. Still,

this restriction applies for single trajectories at a time, which
can easily be realized in memory from disk. Similarity search
across all trajectories, however, does not need these correct
string sets.

The second restriction is fulfilled by disabling queries us-
ing BACR representations: For a query, the set of strings has
to be known. Consequently, either the query is formulated
as a set of strings or a real trajectory is used as the query
object and the set of strings is generated using the transfor-
mation T without the simplification operator S. Note that
this means that in similarity search, two BACR representa-
tions cannot be directly compared. Therefore, each BACR
representation should be realizable in memory, that is the
actual set of strings used to generate the BACR represen-
tation should be stored on disk such that it can be made
available occasionally.

With these restrictions, we can start constructing a lower
bound: assuming that a query is actually given as a set
S1, while the database is accessible only in form of BACR
summaries F2, we want to construct a function

LB(S1, F2) ≤ dJaccard(S1, S2) = 1− |S1 ∩ S2|
|S1 ∪ S2|

With this function, we can speed up range queries and sim-
ilarity search as trajectories can be rejected based on the
lower bound calculated from their BACR representation only.

We proceed by estimating the numerator |S1 ∩ S2| by
counting the number of elements of S1, which match to the
filter F2. Let us call this value ψ1

ψ1 = # {Elements of S1 which match F2} ≥ |S1 ∩ S2|

It is clear that ψ1 is larger or equal to the number |S1 ∩S2|.
This intersection contains elements, which are in both S1

and S2 and the only source of error is a false positive in the
filter F2 leading to an element of S1 wrongly counted as an
element of S2 and therefore as an element of S1 ∩ S2.

Following this analysis, we can even give the expected
error of this estimator: Given that the false-positive prob-
ability of the filter F2 can be estimated from its fraction of
zeros φ2 as in

P (f.p.) ≈ (1− φ2)k,

we can conclude that the expected number of false positives
in calculating ψ1 is given by

eFP ≈ |S1|(1− φ2)k

This probabilistic value eFP can be used to select the
appropriate configuration of the Bloom filters in order to
reach some amortized running time in similarity search with
a known error of the lower bound. It is this value eFP ,
which controls the tightness of the bound and therefore the
efficiency of pruning. Note, however, that this value will
have to be propagated through the similarity measure for
which a bound is calculated using ψ1.

Now, we give an estimator for the denominator in a similar
way: We approximate S1 ∪S2 by the number of elements of
S2 plus the number of elements of S1, which do not match to
the filter F2. Again, the only source of error is given by an
element of S1 matching the filter F2 leading to an element
not counted towards S1 ∪S2 (we are counting those that do
not match). Therefore, this estimator, called ψ2 is smaller

than the union:

ψ2 = |S2|+ # {Elements of S1 ,which do not match F2}
≤ |S1 ∪ S2|

Again, the error is controlled by |S1| times checking filter F2

for the same expected number of false positives of

eFP ≈ |S1|(1− φ2)d,

So far, we have used the following elements for calculating
some values ψ1 and ψ2: (1) The elements of S1, (2) the
number of different elements that have been added to F2

(e.g., |S2|), and (3) the filter containment relation of F2

given by the Bloom filter construction.
By combining the inequalities for φ1 and φ2 it is easy to

see that

LB(S1, F2) := 1− ψ1

ψ2
≤ dJaccard(S1, S2) = 1− |S1 ∩ S2|

|S1 ∪ S2|

We will show that this lower bound is actually non-trivial
and very efficient to compute in Section 7. However, this
lower bound is not compatible with the union of sets. Con-
sequently, it can be used to prune the search space in a
linear walk of the dataset, while this construction cannot
prune sets of elements at a time.

6. SIMILARITY SEARCH AND THE UNION
OF SETS

The developments of the preceding section have led to a
lower bound for the Jaccard distance based on Bloom filters.
However, we still have to consider each sketch of an element
of the trajectory database individually. This clearly results
in a scaling limit: When the amount of trajectories grows,
both the memory consumption and the query times grow
linearly.

In geometric similarity search, a lot of work has been
done with respect to pruning larger or smaller parts of the
database in order to solve this problem. The central ingredi-
ent of this is separation: There are geometric objects (balls,
minimum bounding rectangles, half spaces, etc.) such that
most elements belong to one and only one such object. A
point, for example, can be inside a rectangle or not. The
main problem of indexing trajectories is given by the fact,
that trajectories cannot be separated in this way: Given
a hypothetical separation of trajectories, consider the con-
catenation of two trajectories taken from different separa-
tion sets, which forms a valid trajectory belongs to both
sets at the same time. As a consequence of the absence of
separation, many approaches to trajectory index use their
point-based substructure instead or generate many small
segments.

With this paper, we explore a different direction to recover
distance-based prunings for groups of trajectories (e.g., sets
of sets):

In order to be able to use distance-based pruning for mul-
tiple objects at a time, it must be possible to compare a
concrete query element tq with a summary representation
S = S ({t1, . . . , tn}) of different trajectories using a function
often called mindist in a way such that

d(tq, ti) ≥mindist(tq,S(S)) ∀ 1 ≤ i ≤ n. (2)

In other words, nearness propagates from sets to its ele-
ments: if a query is not near to a set, it is not near to any
element.

In this case, several queries can replace calculating the
distance between a query (or candidate) object tq and each
trajectory ti ∈ S by calculating the function mindist once
for the set.

With respect to our BACR representation, there is a straight-
forward candidate for the summary operation S given by the
union of sets. This operation is directly supported by Bloom
filters using a binary OR operation on the filter array not
introducing additional errors. Unfortunately, most set sim-
ilarities are incompatible with the union operation that is,
the function mindist cannot be given by the distance of
the discretized query trajectory tq with some “union” of the
BACR representation of the trajectories in a set S.

As an example consider the Jaccard distance between two
sets Q and A and take a single element set B = {b}. In this
situation, Equation 2 results in

α

β
=
|Q ∩A|
|Q ∪A| ≤

|Q ∩ (A ∪ {b})|
|Q ∪ (A ∪ {b})| =

γ

δ
,

where α . . . δ are just names for the individual parts. In the
case that b /∈ A and b /∈ Q, the numerator does not change
(α = γ) while the denominator increases by one (δ = β+1).
This clearly contradicts the inequality. And it is clear that
there is no direct solution in this situation, as the size of the
error depends on the intersection of the query set Q with
each part of some summary. So either we know the parts
of the summary rendering the summary operation useless or
we can’t build a mindist function for variable queries Q in
this way.

Still, there is a feasible solution to this problem at least
for similarity search: The Jaccard distance is monotonous
with the Dice coefficient [12], which is another set similarity
index given by

simDice(A,B) =
2|A ∩B|
nA+ nB

In essence, this means that

simDice(A,B) ≤ simDice(C,D)⇔ simJacc.(A,B) ≤ simJacc.(C,D)

In other words: when using the Dice index instead of the
Jaccard index, the objects will be ordered equally. Note,
however, that the complement of the Dice coefficient does
not obey the triangular inequality.

With the Dice coefficient, the union of the sets is not used
at all and, consequently, we don’t run into the same problem
as before. Still, we need to know the sizes of the individual
sets or summarize those.

Inequality 2 rewrites to

simDice(tq, ti) ≤maxindex(tq,S(S1, . . . , Sk)), (3)

where maxindex denotes the maximal Dice index possible
for the summarization S(S), which can be calculated using
the minimum size m of the different sets S1 . . . Sk.

Using the BACR representation and a query object tq
realized as a set Q of strings, we can easily calculate an
estimate of |Q ∩ S(S)| by testing the Bloom filter for every
element of Q. Depending on the configuration of the Bloom
filter, this results in a sligthly larger value than |Q ∩ S(S)|
due to possible false positives. However, it will never report
a smaller value. Putting this together, we see that when we

2 5 10 20 50 100 200 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Histogram Size

Fa
ls

e
Po

si
tiv

e
R

at
e

(a) Impact of Histogram Size
on False Positives

500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

N

Ti
m

e

(b) Scaling for Increasing
Database Size

Figure 4: Performance of the Histogram of Fractions
of Zeros on the Geolife Dataset

keep track of the minimal size of a set inserted into a union-
based summarization, we can calculate a function mindist,
for which

d(tq, ti) ≥mindist(tq,S(S)) (4)

holds, where d is the “distance”1 given by the complement of
the Dice coefficient. Using the fact that the Dice coefficient
is monotonous with the Jaccard index, we can use this ap-
proach for k-nearest neighbor search. The nearest neighbors
with respect to the complement of the Dice coefficient are
the nearest neighbors with respect to the Jaccard index.

We can use this concept in order to compress sets of sim-
ilar objects: Some sets will be completely unrelated having
an empty intersection. Other sets will have a varying simi-
larity and compressing clusters of similar sets into a single
union-summarized BACR representation can be fruitful as
long as the filter is powerful not to introduce too many false
positives and the actual size of the individual sets is simi-
lar enough such that taking the minimum does not result in
severe loss of tightness.

However, strategies to select subsets of trajectories to be
represented by a single BACR are quickly getting compli-
cated and go beyond the scope of this paper. Still, this is
a very interesting question on its own and left for future
research.

7. EXPERIMENTS
In order to assess the performance and quality of the dif-

ferent approaches presented in this paper, we conducted ex-
periments on synthetic datasets as well as on large trajectory
databases.

All algorithms were implemented in C++ using g++ (4.7.2)
with full optimizations and have been executed on a medium-
performance laptop (Intel Core i7-3540M, Quadcore, 3 GHz,
8GB RAM) using a single core. If not otherwise stated,
times have been estimated by performing the operation 100
times in order to reduce random influences.

7.1 Performance on Spatial Datasets
Table 1 depicts the results of the main evaluation on three

real datasets, a sample “Small Geolife” of the Geolife dataset
[16] with 2,890 trajectories containing roughly 5 million points,
“Full Geolife” with 18,670 trajectories containing roughly 25

1Note that this function does not obey the triangle inequal-
ity.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

N

Ja
cc

ar
d

True Distance
Estimate

 0 5,000 10,000 15,000 18,655

(a) Approximate Jaccard
Distance

0.
9

1.
0

1.
1

1.
2

N

Ti
gh

tn
es

s

True Value
Estimator
Lower Bound

 0 5,000 10,000 15,000 18,655

(b) Tightness

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N

Ja
cc

ar
d

True Distance
Estimate
Lower Bound

(c) 2048 bit (8 hash func-
tions)

True Distance
Estimate
Lower Bound

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N

Ja
cc

ar
d

(d) 256 bit (4 hash func-
tions)

Figure 5: Experimental Results on Geolife

million points, and “Roma” with 316 trajectories containing
roughly 22 million points.

The evaluations were performed with geohashes of five
and six characters representing reasonable sizes for trajec-
tory data. The Fraction of Zeros (FOZ) of the Bloom filter
is given. Note, that this value should be larger than 50%
in order for the Bloom filter to work effectively. All ex-
periments show the expected results: The fast subset query
using histograms of zeros is speeding up the Baseline Subset
Query using the Bloom filters directly by a varying amount.
This was expected, as the Bloom filter results in a random
hash field and the skewness of such random field tends to
be more useful for a higher fraction of zeros. Also, the false
positive rate of the subset query using BACR is as expected:
Generally, it is smaller for filters with larger fraction of zeros
and higher otherwise.

Figure 4 shows the effect of histograms of fractions of ze-
ros. For increasing length of the histogram, the false positive
rate starts out quite high, but drops quickly. Even for small
numbers of 16 or 32 for the histogram length, the false posi-
tive probability is below 10%. To the right, you can see the
impact on running times. The computational complexity
of a query increases linearily with the size of the histogram
chosen. This can be seen from the increasing slope in the
right figure. Consequently, a linear tradeoff between power
and false positive rate is observed, which must be tuned ac-
cording to the application scenario and database size.

Additionally, Figure 5 depicts the results of indexing Ge-
olife with a geohash length of 7: Due to the large number
of geohash cells per trajectory, these represent the trajec-
tories in a very detailed way resulting in smooth results:
Figure 5(a) depicts the true Jaccard distance and the result
of the approximate Jaccard calculation, which quite well re-
flect each other. This can also be seen from the tightness

0 200 400 600 800 1000

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

N

D
is

ta
nc

e
an

d
Lo

w
er

 B
ou

nd

Real Distance
Lower Bound

(a) Optimal Case

0 200 400 600 800 1000

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

N

D
is

ta
nc

e
an

d
Lo

w
er

 B
ou

nd

Real Distance
Lower Bound

(b) Suboptimal Case

Error

Fr
eq

ue
nc

y

0.00 0.05 0.10 0.15

0
20

0
40

0
60

0
80

0

(c) Histogram of Errors

0.
2

0.
4

0.
6

0.
8

1.
0

N

Ti
gh

tn
es

s

 1 161,421 500,000 1,000,000

(d) Tightness

Figure 6: Tightness of the Lower Bound

diagram in Figure 5(b) in which the tightness of the lower
bound as well as the tightness of the approximate algorithm
are compared. Figures 5(c) and 5(d) depict that an increase
in the size of the Bloom filter (together with a fitting number
of hash functions) results in better quality. Note, however,
that such a fine resolution of geohashes is a good stress test
for the system albeit the Jaccard similarity relates only a
fraction of the database.

7.2 Evaluation of the Lower Bound on Ran-
dom String Sets

We performed experiments on this lower bound by creat-
ing random sets of 25 strings of length three over an alpha-
bet of three letters. Thereby, some strings will occur several
times. Then, these string sets are made unique such that
every element is only inside once. These two sets are used
to create a Bloom filter using the Murmur hash and seven
hash functions.

We use two sizes m for the filter: choosing an optimal size
of 256 bits leads to an expected false positive rate of

E = 0.6185
m
256 ≤ 0.6185

25
256 ≈ 0.0073

while using only 128 bits leads to

E = 0.6185
m
128 ≤ 0.6185

25
128 ≈ 0.085440.

The effectiveness of a lower bound can be measured in
different ways depending on the context. The most basic
and general measure is called tightness and we define it,
following [8], as follows:

T =
Value of the Lower Bound

True Value

This creates a value between zero and one, the larger, the
better.

For both cases, we create 1,000,000 string sets and calcu-
late the tightness. Figure 6 depicts the results. However,

Metric / Algorithm Small Geolife Full Geolife Roma Small Geolife Roma

Number of Trajectories 2,890 18,670 316 2,890 316
Number of Points 4,997,092 24,876,978 21,817,536 4,997,092 21,817,536

Geohash Length 5 5 5 6 6
Number of Hash Functions 3 5 3 3 3
Bits per Trajectory 32 128 192 128 2048
Average FOZ 70.7% 85.45% 59.53% 69.5% 58.76%

Baseline Subset Query 0.70s 44.49s 0.12s 0.81s 0.12s
Fast Subset Query 0.62s 26.31s 0.08s 0.70s 0.08s
Subset Query FP-Rate 2.99 % 5.59% 9.78% 17.06% 28.49%

Baseline Jaccard 25.737s 971.74s 1.62s 184.96s 60.002s
Approximate Jaccard 5.87s 474.82s 0.179s 11.69s 2.12s
Lower Bound 2.93s 124.55s 0.05s 4.2s 0.17s
Average Tightness 0.54 0.47 0.26 0.39 0.23
RMSE Tightness 0.58 0.64 0.69 0.71 0.45

Table 1: Summary of query performance on various datasets

the plots show only the first 1,000 data points in order to
make them more readable. For the optimal configuration,
the tightness was constantly one and the error was zero.
The filter has been configured to hold 25 elements or less.
The fraction of zeros of these filters is therefore larger than
50% as we added less elements due to string collisions. The
unique string sets had varying sizes from 9 to 24 with a
median of 16 for both S1 and S2 and the fraction of zeros
ranged from 0.511 to 0.785 with a median of 0.63. Note
that the false positive rate depends only on the fraction of
zeros and that the fraction of zeros of a filter gives a prob-
abilistic hint on how good the presented bound is. For the
suboptimal case, the fraction of zeros is much smaller rang-
ing from 0.273 to 0.640 with a median of 0.42. This leads
to false positives and consequently to differences between
the presented bound and the actual distance. The abso-
lute errors were smaller than 0.258. Though this is a large
error given that the Jaccard distance takes values between
zero and one, these errors occur seldom. The median (and
even the third quadrant) of the error is zero and the mean
is 0.011. The lower bound was suboptimal in only 161,421
cases as depicted in 6(d).

The conclusion of these results is that the bound is very
effective for random sets. In spatial datasets created with
geohash, however, there are only few strings, still, the bound
is useful as shown in the following section.

7.3 Performance in Nearest Neighbor Search
on Spatial Datasets

In order to fully understand the impact of a lower bound,
we should also discuss it with respect to a typical dataset. In
nearest neighbor search, the lower bound is usually used to
prune elements of the database once they are farther away
than the current best one. Therefore, the actual perfor-
mance of a lower bound depends on the distribution of the
distances in the database: the amount of computation time
saved by pruning is not actually related to the tightness,
which is more useful in comparing different lower bounds.

In this situation, a widely accepted measure is given by
the pruning ratio, which can be defined as follows:

P =
Number of Omitted Elements

Total Number of Elements

This measure creates a value between zero and one with
one representing the best case. Similarly, we can define the
time ratio

TR =
Time used with Lower Bound

Time used without Lower Bound

Additionally, we record the average query times with and
without lower bound. In the following, we use a geohash
configuration of five characters, 128 bit per trajectory as
well as three hash functions.

For the Roma dataset we measured a pruning ratio of
33.79%. The time ratio is even more convincing with a value
of 64.12%. This means that the nearest neighbor search was
performed by examining only 66.21% of the search space and
by using only 35.88% of the time compared to the baseline.
We note an average query time of 3.21 ms with the lower
bound in place and an average query time of 4.63ms with-
out a lower bound. For the Geolife dataset, we noticed an
average time ratio of 31.2% and an average pruning ratio of
34.6% leading to average query times of 3.72ms and 6.54ms.
In general, keep in mind, that all experiments were perfor-
mend inside main memory without disk access and that the
memory consumption of the lower bound is very small. Once
datasets grow such large that they cannot be held in main
memory, the lower bound will reduce disk or network I/O
leading to an even stronger performance increase.

7.4 Example Queries and Results
In order to illustrate the usefulness of representing spatial

similarity by the set similarity of sets of geohash strings,
we implemented the system as a web application in which
queries can be created by clicking several locations creating
the query geohash set. Figure 7 depicts the results of per-
forming a subset and Jaccard queries for the 4th ring road of
Beijing. It is evident that the Jaccard query returned more
diverse results. Still, all trajectories selected by the Jaccard
query have some significant overlap with the 4th ring. This
also relaxes the problem that the subset query is not stable
with respect to measurement outliers. While the subset re-
lation can be broken by a single outlier, this is not the case
for the Jaccard distance.

(a) Subset Query (b) Jaccard Query

Figure 7: Example Queries

8. CONCLUSION
In this paper, a novel way of combining the Bloom fil-

ter technique and the geohash location to string coding ap-
proach is proposed in order to create a memory-efficient, in-
exact representation of trajectories facilitating big data ap-
plications. Motivated by the set nature of the geohash cod-
ing of trajectories, we study the Jaccard distance of sets, give
an approximate calculation and a lower bound, which signif-
icantly reduced the complexity of nearest neighbor queries
with respect to the Jaccard distance. We show that this
lower bound is very strong for uniformly distributed sets of
strings, and that it is sufficiently strong to help in similarity
search of trajectories.

We also note that the Jaccard distance, and therefore also
the presented lower bound, cannot be applied on unions of
sets ruling out an index construction based on representing
collections of objects using a single feature representation.
Still, we note and explain that the Jaccard distance can be
replaced by the Dice index, which does not have this limita-
tion. An important remark is that this Dice index, though
it is compatible with the union of sets, is not indexable by
locality-sensitive hashing rendering the given approach even
more unique. For future work, we envision improvements
on the construction of the lower bound, the calculation of
the lower bound and the representation of time in BACR
summaries as well as evaluations and adaptions to bioinfor-
matics and chemistry.

9. REFERENCES
[1] B. H. Bloom. Space/time trade-offs in hash coding

with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[2] A. Broder and M. Mitzenmacher. Network
applications of bloom filters: A survey. Internet
mathematics, 1(4):485–509, 2004.

[3] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher. Min-wise independent
permutations. In Proceedings of the thirtieth annual
ACM symposium on Theory of computing, pages
327–336. ACM, 1998.

[4] M. S. Charikar. Similarity estimation techniques from
rounding algorithms. In Proceedings of the thiry-fourth
annual ACM symposium on Theory of computing,
pages 380–388. ACM, 2002.

[5] K. Deng, K. Xie, K. Zheng, and X. Zhou. Trajectory
indexing and retrieval. In Computing with Spatial
Trajectories, pages 35–60. 2011.

[6] A. Gionis, P. Indyk, R. Motwani, et al. Similarity
search in high dimensions via hashing. In VLDB,
volume 99, pages 518–529, 1999.

[7] X. Gong, Y. Xiong, W. Huang, L. Chen, Q. Lu, and
Y. Hu. Fast similarity search of multi-dimensional
time series via segment rotation. In M. Renz,
C. Shahabi, X. Zhou, and M. A. Cheema, editors,
Database Systems for Advanced Applications, volume
9049 of Lecture Notes in Computer Science, pages
108–124. Springer International Publishing, 2015.

[8] E. Keogh and C. A. Ratanamahatana. Exact indexing
of dynamic time warping. Knowledge and information
systems, 7(3):358–386, 2005.

[9] G. Niemeyer. Geohash, 2008.

[10] P. Ruppel and A. Küpper. Geocookie: a space-efficient
representation of geographic location sets.

[11] S. J. Swamidass and P. Baldi. Mathematical
correction for fingerprint similarity measures to
improve chemical retrieval. Journal of chemical
information and modeling, 47(3):952–964, 2007.

[12] P. Willett, J. M. Barnard, and G. M. Downs. Chemical
similarity searching. Journal of chemical information
and computer sciences, 38(6):983–996, 1998.

[13] J. J.-C. Ying, W.-C. Lee, T.-C. Weng, and V. S.
Tseng. Semantic trajectory mining for location
prediction. In Proceedings of the 19th ACM
SIGSPATIAL International Conference on Advances
in Geographic Information Systems, pages 34–43.
ACM, 2011.

[14] C.-T. Zhang, R. Zhang, and H.-Y. Ou. The z curve
database: a graphic representation of genome
sequences. Bioinformatics, 19(5):593–599, 2003.

[15] K. Zheng, S. Shang, N. J. Yuan, and Y. Yang. Towards
efficient search for activity trajectories. In Data
Engineering (ICDE), 2013 IEEE 29th International
Conference on, pages 230–241. IEEE, 2013.

[16] Y. Zheng, X. Xie, and W.-Y. Ma. Geolife: A
collaborative social networking service among user,
location and trajectory. IEEE Data Eng. Bull.,
33(2):32–39, 2010.

