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Abstract—Location-based services are possibly the most
popular services with respect to mobility, since they allow for
the automated filtering of information relevant to the user.
This paper presents a detailed evaluation of SMARTPOS,
an indoor positioning system based on deterministic 802.11
fingerprinting and a digital compass. SMARTPOS is accurate
enough to supply location estimates for indoor location-based
services and can be deployed standalone on a mobile phone.
Assuming that the mobile phone is held in front of the body,
the system considers the user’s orientation to avoid errors
caused by the blocking effect of the human body. For location
estimation it employes a kNN approach on that part of the
fingerprint database that corresponds to the user’s current
orientation. As an extension to this approach, SMARTkNN is
proposed which is based on dynamically selecting the number
of nearest neighbors. This improved the mean position error
to 1.10 meters and to a maximum position error of 2.65
meters in a 250 square meter environment in comparison
to SMARTPOS which achieved a mean position error of
1.16 meters and a maximum position error of 2.74 meters.
Furthermore, it is shown that the errors of SMARTPOS are
normally distributed. Based on this fact, a novel online error
estimator using bivariate Gaussians is proposed which gives the
best approximation of the observed errors compared to existing
methods. Additionally it was observed, that the density of the
underlying radiomap strongly correlates to the maximum error
and has a weaker impact on the observed mean error.

Keywords-802.11 Fingerprinting, Orientation Filter, Mobile
Phone Positioning, Location-Based Services.

I. INTRODUCTION

In recent years, a trend towards mobility can be recog-
nized. Smartphones, small devices with comparatively high
processing power and mobile internet, make it possible to
work while traveling, to stay connected to social networks,
and to retrieve nearly any information anywhere at any
time. One of the most popular mobile services are location-
based services (LBS). These are value-added services, which
utilize the location of the mobile to present the user with
information about its surroundings. Navigation and informa-
tion services, friend-finder, pet-tracker, and location-based
games are only a small part of the number of services and
applications filling the app-stores of the world.

The key enabler for LBS is the Global Positioning System
(GPS). It enables accurate positioning in outdoor environ-
ments, the usage is free of charge, the system is globally
available, and most of today’s smartphones are equipped

with a GPS-receiver. Unfortunately, GPS is not able to track
people in indoor environments with acceptable accuracy.
Signals might get lost due to attenuation effects of roofs
and walls or lead to position fixes of very low accuracy due
to multipath propagation.

Even worse, indoor location-based services require much
higher precision guarantees than outdoor services. Errors
should not exceed a few meters to allow for a differentiation
between several floors or rooms. Otherwise, the service
could provide information for places, which are quite far
away from the actual position of the target. Despite these
challenges, many users would appreciate indoor location-
based services, especially in large and complex buildings
such as museums, shopping malls, airports, hospitals, or
university buildings.

Existing indoor positioning techniques can be grouped
by their level of precision and the expenses for additional
infrastructure. Dedicated indoor positioning systems such as
ultra wide band or ultrasonic systems consist of several com-
ponents with the sole purpose of determining the positions
of possibly multiple targets in indoor environments. The
precision is often high, but an expensive infrastructure is
needed and hence the space where positioning is possible
is usually limited to a small area, where higher accuracy
compensates the high cost. Another class of systems is
built on existing infrastructure such as WLAN, Bluetooth
or inertial sensors for positioning. The precision of such
systems is limited, but the system can be deployed with few
additional expenses.

In this paper, we extend SMARTPOS [1], an indoor
positioning system for smartphones based on deterministic
WLAN fingerprinting and a digital compass. The system is
self-positioning, meaning that the whole positioning process
(including all measurements) is carried out on the phone. It
achieves a high accuracy within few meters and therefore is
able to provide interactive, non-background indoor location-
based services with high quality location estimates at no
additional expenses. SMARTPOS makes use of the smart-
phone’s orientation (which should correspond to the user’s
orientation) to avoid errors caused by the blocking effect
of the human body. Only those fingerprints are considered
for location estimation that were measured while viewing
in a similar direction like the user. As an extension to the



system, a detailed evaluation of the system’s errors has been
carried out. Based on the results of that evaluation a novel
online error estimation scheme is proposed which enables
the system to provide an error estimator as a Gaussian
probability density function for each position measurement.
Furthermore, a method for dynamically choosing the number
of nearest neighbors based on convergence criteria is pro-
posed which obviates the need for empirically determining
an optimal number for every environment.

The remainder of this paper is structured as follows: In
the next section, an overview of existing indoor positioning
systems with focus on WLAN fingerprinting is given. In
Section III, the original SMARTPOS is presented and eval-
uated in detail, stressing the impact of several parameters
and decisions on the design of the system. Whether weighted
or non-weighted kNN (k-nearest neighbors) in signal space
should be carried out, the influence of missing values on
the algorithm and the performance gain of including the
orientation on SMARTPOS and a Naive Bayesian Estimator
are evaluated. In Section IV, the question of the reliability
of the positioning method is researched and an online error
estimation scheme introduced. Then the influence of the
density of fingerprints is analyzed in Section V and a novel
algorithm for dynamically choosing the best number of
neighbors for every position fix is presented in Section VI.
Section VII concludes the paper and gives hints on future
work.

II. RELATED WORK

In the past 15 years, a variety of technologies for indoor
positioning have been proposed. A good overview of exist-
ing indoor positioning systems using radio frequency (RF)
technologies such as radio frequency identification (RFID),
ultra wide band (UWB), ultra high frequency (UHF), WLAN
and Bluetooth is given in [2]. However, the authors do not
describe up-to-date systems, which have been developed
since 2007. We therefore focus in this section on the recent
development and work closely related to our research.

Many pedestrian indoor positioning systems rely on
WLAN fingerprinting algorithms [1], [3], [4], [5], which
offer position estimates with sufficient accuracy (i.e., 1-
3m) while utilizing the existing WLAN infrastructure and
therefore avoiding high expenses. These algorithms belong
to the area of pattern matching and work in two phases: The
first phase is called the calibration phase, where a database is
created by the collection of received signal strength indicator
(RSSI) at certain reference positions from the surrounding
access points (AP). The accumulated information of RSSI,
AP and reference position at a specific time/interval is
called a fingerprint. In the second phase, positioning is
carried out by comparing current RSSI measurements with
the previously stored values from the database. Different
algorithms calculate the position as the reference position
of the nearest fingerprint in signal space [3], the average of

the k-nearest neighbors (kNN) with or without the distance
in signal space as additional weight [1]. Some algorithms
also utilize Bayesian methods [4], [5] based on probability
distributions derived by multiple measurements over a length
of time. While earlier systems utilize laptops for position
determination, the recent trend goes towards smartphones.
Martin et al. present one of the first WLAN positioning
systems which integrates both offline and online phase on a
mobile phone [6].

One of the first developed systems for WLAN fingerprint-
ing, RADAR [3], includes already the impact of the user’s
orientation in the position calculation by obtaining empirical
data for multiple orientations. Kaemarungsi et al. further
analyze the effects of the user’s presence and orientation
on RSSI values in [7]. The results show that the attenuation
effects of the human body can lower the RSSI by more
then 9 dBm. COMPASS [5] is one of the first fingerprinting
systems that addresses the problem of attenuation effects
caused by the human body by adding a digital compass to
the system. In the calibration phase, fingerprints for several
selected orientations (typically each 45◦ or 90◦) are collected
at reference positions. In the positioning phase, the user’s
orientation is measured by a digital compass and only those
fingerprints with a similar orientation estimate are used
for the positioning algorithm. COMPASS presents the most
similar approach to the SMARTPOS System. However, we
extent the work in serveral directions. By using kNN instead
of a Bayesian estimator, the number of measurements carried
out for fingerprint creation is massively reduced. While
COMPASS reports 20 to 100 measurements for a single
fingerprint to correctly estimate the Gaussians, we tested
our system with 3-5 measurements. While the COMPASS
approach might achieve an even higher accuracy due to the
larger training dataset and the inclusion of the RSSI’s second
moment, it is not well suited for the self creation of databases
by the user due to the higher calibration effort. Chan et al.
also present a system running on a mobile phone considering
the orientation of the user in [8], but apply a technique called
Newton Trust Region for further position refinement.

Most up-to-date systems combine WLAN fingerprinting
with additional technologies such as inertial sensors to offer
more accurate position estimates and continuous tracking
functionality [9], [10]. In [9], the authors utilize a particle
filter for fusing WLAN fingerprint location estimates with an
accelerometer. For the utilization of the SMARTPOS system
in Bayesian filtering techniques, a probability distribution
needs to be given for each position calculation. Existing
approaches [11], [12] often utilize grid based approaches,
where the discrete probability distribution is directly ob-
tained by the probability of all grid cells according to
a Bayesian model. In [9], Evennou and Marx utilize a
Gaussian distribution for particle weighting with the mean
located on the WLAN position and a variance based on the
deviation of the RSSI.



Lemelson et al. further investigate error estimation of
WLAN fingerprinting based position determination in [13].
They propose different schemes which estimate the occuring
error as a scalar that can be used to assess the trust of
position estimates.

In this paper, we show that the position errors follow
a Gaussian with high probability. Based on this result, an
online error estimator is proposed that derives a Gaussian
probability density function modelling an estimate for the
ground truth position relative to the position fix. We then
compare our own approach to slightly adapted proposals
from Lemelson et al. [13]. In contrast to that paper, Beder et
al. propose an offline error estimation method which allows
for the calculation of the expected uncertainty of every
possible position [14]. Similar to [9] a Gaussian distribution
of RSSI values is assumed and the covariance matrix of the
fingerprint is used to calculate the expected error.

In addition to the error estimation, this paper proposes
a method for dynamically estimating the number of neigh-
bors suitable for position estimation. Roshanaei and Maleki
combine in [15] traditional RSSI-based fingerprinting with
a method based on Angle of Arrival (AOA) to further
reduce the set of the nearest neighbors to those which are
located in a certain area. The area is determined by their
AOA algorithm using an adaptive antenna array. Altintas
and Serif enhance in [16] the neighbor selecton by k-
means clustering. The candidate fingerprints are clustered
according to their reference points and only the fingerprints
of one cluster which has the smallest diameter are returned.
Another approach is presented by Shin et al. in [17]. For
their weighted nearest neighbor approach, the neighbors are
picked from a set of all fingerprints with a distance in signal
space below a certain threshold. Furthermore, the mean
distance in this set is calculated and only those fingerprints
considered for position estimation whose distance is below
this mean value. In contrast to related work, the method
for dynamically choosing k presented in this paper is based
on convergence criteria of the derived position estimates for
different values of k. One advantage is, that it is completely
independent from deriving thresholds in the signal space.

III. SMARTPOS: A SYSTEM FOR SELF-CONTAINED
MOBILE POSITIONING

In this section, we describe the original SMARTPOS
system presented in [1], a system for an accurate and self-
contained indoor positioning based on deterministic 802.11
fingerprinting and a digital compass. The system runs stand-
alone on a mobile phone and consists of a management
module for the creation and maintenance of the fingerprint
database and a module for location determination. The
latter offers the possibility of modifying several parameters
concerning the deterministic location estimation or allows a
change of the positioning method to a room-based bayesian
approach.

A. Database Creation on a Mobile Phone

During the offline phase, active scans for WLAN signals
from surrounding access points (APs) are executed with a
mobile phone at several reference positions. The measured
signal strength values are enhanced with the viewing direc-
tion and the pixel coordinates of the reference position on a
bitmap of the floor. The viewing direction is obtained by the
digital compass of the smartphone, the position is assigned
by tapping on a zoomable and scrollable map displayed
on the screen of the mobile. Finally, these values (in the
following referred to as fingerprints) are stored in a database.
At each reference position, four fingerprints are created,
one in the direction of each axis of the specific building.
The alignment along the axes of the building instead of the
geographic directions is carried out to improve the accuracy
of the application in tracking scenarios since most users
move along the main axes of a building, e.g., when walking
down a corridor. For each fingerprint, five scans are executed
and the average of the received signal strengths is stored in
the database to reduce the impact of short-time fluctuations.
Furthermore, the orientation of the phone, which is derived
from the mobile phone’s compass, is averaged throughout
the sampling time and also stored in the database. This
is done to remedy the disturbances of the magnetic field
inside of buildings, especially near electronic sources or
large amounts of metal.

B. Deterministic Location Estimation

During the online phase, SMARTPOS utilizes a de-
terministic positioning algorithm based on weighted kNN
to estimate the approximate position of the user. WLAN
signal strength measurements are carried out in a continuous
fashion and for each measurement m the current orientation
o of the phone is measured by its digital compass.

The orientation is considered to represent the approximate
viewing direction of the user and hence implicitly yields
the information about the attenuation of his body. The
online RSSI values should therefore not be compared to all
fingerprints in the database due to possible influence of the
human body, but only to those fingerprints that correspond
to a similar viewing direction to o during the offline phase.
Since the viewing direction is retrieved from the noisy
readings of the compass, the orientation is averaged over
the duration of each scan. This mechanism could also be
replaced by advanced filtering algorithms to reduce the
impact of outliers. SMARTPOS considers only a subset S
of all fingerprints in the database containing those with a
maximal deviation of 50◦ from o and is therefore able to
reduce the number of fingerprints matched in the online
phase to an extent of 25% of the database size.

On the remaining subset S of filtered fingerprints, the
nearest neighbours in signal space with respect to m are
computed. SMARTPOS uses a sophisticated distance metric
for the comparison of two RSSI measurements (i.e., the



online measurement m and a fingerprint f ∈ S): Each
measurement contains the information about all RSSI values
with the MAC address of the AP, which sent the signal.
Since at a given position only signals of a subset of all
access points in the building can be received, the question
arises how to treat missing signal strength information in
one of two compared measurements. One possibility would
be to assign a fixed value MIN to the RSSI of all access
points missing in one measurement. This mechanism favors
combinations of measurements, where signals by an AP are
of very small strength in one measurement and missing
in the other instead of combinations, where a high RSSI
value in one measurement is missing a counterpiece in the
other. The value of MIN should be below the minimal RSSI
value measureable by the device. The other possibility is to
ignore all signal strength information missing at least in one
of the compared measurements. Based on the results of a
detailed evaluation (see Section III-C) SMARTPOS utilizes
the second approach, which is expected to be more robust
in the case a new AP is turned on or an existing AP is
turned off. Nevertheless, a minimum overlap of at least three
APs is required to avoid choosing wrong neighbors due to
propagation symmetries in larger environments.

Based on the Euclidean distance di = dist(m, fi) in
signal space the subset N ⊂ S of the k nearest neighbours is
computed. In addition, SMARTPOS assigns a weight wi to
each fingerprint fi ∈ N, i ∈ {1, . . . , k} which is indirectly
proportional to the distance in signal space. It computes after
the following formula:

wi =

di k∑
j=1

1

dj

−1 (1)

It is easy to see that the wi are normalized since
k∑

i=1

wi = 1.

For the computation of the user’s position l, SMARTPOS
calculates the weighted average of li, i ∈ {1, . . . , k}, li being
the reference position of the fingerprint fi:

l =

k∑
i=1

liwi (2)

C. SMARTPOS Evaluation

For the evaluation of the SMARTPOS system, two sets
of fingerprints were manually collected under laboratory
conditions, i.e., without anybody around, in a part of our
university building. All RSSI information was gathered with
a HTC Desire. The first set is arranged in an approximate
grid of 79 reference positions with fingerprints measured in
the direction of all four main axes of the building, which
results in 316 fingerprints in total (the grey dots in Figure
1). The second set is a much smaller set of 64 fingerprints
at 16 pseudo-randomly distributed reference positions (again

Figure 1: Reference database (gray dots) and online testset
(black dots). APs are displayed as grey rectangles.

measured in the direction of all four axes) within the cov-
erage of the database and is used as substitution for online
measurements (the black dots in Figure 1). This ensures that
our results originate from an identical setting for all the
different location estimators. The estimators are evaluated
in respect to four criteria according to [2]: the accuracy as
the mean position error, the precision as the maximal and
the standard deviation, and the complexity as the number
of compared fingerprints. The question of scalability, cost
and robustness is not considered, since the scalability and
the cost are the same in all systems and the robustness is
hard to measure. In the following, the results from a detailed
evaluation of SMARTPOS in the described setting are pre-
sented and discussed. SMARTPOS is evaluated as follows:
First, the deterministic kNN approach is analyzed and the
settings of several parameters compared to each other. The
questions of assigning a weight to the nearest neighbors
and whether missing signal strength information should be
considered or ignored are discussed and the impact of the
user’s orientation on accuracy and precision presented. In a
consecutive step, an optimal value for k is determined for
SMARTPOS. Finally, the usage of orientation information
in a Naive Bayesian Estimator is analyzed.

1) Weighted or Non-Weighted kNN: When using a kNN
approach together with WLAN fingerprinting one has to
decide whether just to compute the center of the nearest
neighbors or to add a weight to each of the k-nearest
neighbors according to the distance in signal space and
then calculate the center of mass. With SMARTPOS, we
evaluated both approaches for variable k. Figure 2 shows
the results. The weighted approach behaves similarly, but
performs better for each k > 1. The same applies for the
deviation while the maximum error shows no significant dif-
ference except for two outliers (k = 3 and k = 8), for which
the weighted approach also performs better. SMARTPOS
therefore utilizes a weighted kNN as described in Section
III-B.

2) Treatment of Missing RSSI: In Section III-B, two
approaches for the treatment of missing signal strength
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Figure 2: Comparison of weighted and non-weighted kNN
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Figure 3: Comparison of considering and ignoring missing RSSI values

information when comparing two RSSI measurements are
described. One considers the information by assigning a
minimal value of −100 dBm for the missing RSSI in-
formation, the other ignores all RSSI values from APs
measured only in one of the two compared measurements.
Both approaches were tested for a variable k and the results
are presented in Figure 3. The accuracy of a system ignoring
missing values is higher than the accuracy of a system
considering the information for each k > 3 and also offers
a minimum mean error for k = 9. The deviation only
becomes smaller for each k > 7 with the minimum for
k = 11, while the maximum error oscillates and therefore
adds little information. Hence, SMARTPOS ignores missing
RSSI values as long as signals of at least three common APs
have been measured in fingerprint and measurement.

3) Impact of Orientation Information: The most profound
innovation of SMARTPOS is the usage of orientation in-
formation in a deterministic location estimation system on
a smartphone. With the filtering of the fingerprints in the
offline database with respect to the orientation information
of the user, the complexity of the online matching can be
quartered (when using the state of the art four directions
for each reference position) and the accuracy and preci-
sion increased by a considerable amount. Figure 4 shows

the results of the tests. The mean error is much smaller
when using the orientation information and also reaches its
minimum of 1.16 m for k = 4, while the approach without
orientation information reaches its minimum of 1.31 m for
k = 9. The minimal deviation of 0.57 m for k = 6 is
also much smaller than the minimal deviation of 0.74 m for
k = 11 without considering the orientation. The same is true
for the maximum error, which is minimal for k = 5 with
a value of 2.65 m when considering the user’s orientation,
whereas without the orientation information the minimum
is 3.29 m for k = 8. The much smaller number of k
when using the orientation approach can be explained by
the fact that the number of fingerprints for comparision
is quartered and each online measurement has at most 4
neighbors in the grid, while without the filtering of the user’s
orientation the number of neighbors can increase to a total
of 16 neighbors, because 4 fingerprints are stored for each
reference position. In conclusion, SMARTPOS utilizes the
orientation information of the user to improve accuracy and
precision of the location determination, while reducing the
complexity at the same time.

4) Determination of k: Based on our experiments with
SMARTPOS, we recommend utilizing an orientation-based
weighted kNN approach with k, the number of neighbors,



1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

0 2 4 6 8 10 12 14

m
ea

n 
er

ro
r (

m
)

k

non-oriented
oriented

(a) The mean error in meter

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 2 4 6 8 10 12 14

st
an

da
rd

 d
ev

ia
tio

n 
(m

)

k

not-oriented
oriented

(b) The standard deviation in meter

2.5

3

3.5

4

4.5

5

5.5

6

6.5

0 2 4 6 8 10 12 14

m
ax

 e
rr

or
 (m

)

k

not-oriented
oriented

(c) The maximum error in meter

Figure 4: Comparison of considering and ignoring the user’s orientation

set to 4. For the comparison of measurements one should
ignore all signal strength information of each AP which is
missing in at least one of the measurements when at least
three APs are in common. With these parameters, the system
offers the lowest mean error of 1.16 m of all possible fixed
assignements for k with an acceptable deviation of 0.66 m
and a small maximum error of 2.74 m. However, it is shown
in Section VI that by dynamically choosing k for each
measurement separately the error can be further reduced.

5) Orientation and the Naive Bayesian Estimator: The
influence of filtering fingerprints according to their orienta-
tion on deterministic kNN positioning has been described.
To get a deeper understanding of what influence the reduc-
tion of the search space according to the viewing direction
has on indoor positioning, we chose to evaluate on the most
simple (and often most effective) way of inducing a position
from given measurements: Assuming that the variance in
measurements is normally distributed, we estimate the mean
and variance of a set of measurements taken in the same
room and reuse this information for identification.

In order to do so, we assigned a label with each fingerprint
specifying the room that it lies in. The long corridor has been
cut into three rooms to reduce the variance of measurements
in this long area as depicted in Figure 5. Using this labeled
data we constructed a Bayesian Estimator, which calculates
for each pair of AP and room label the mean RSSI, its stan-
dard deviation, weighted sum and precision and reuses them
for classification. We tested the classification performance
with 10-fold stratified cross-validation training on 90% and
evaluation on the remaining 10% of the data.

We used this technique on five different datasets: A dataset
for each quadrant and a dataset where a random subset of
25% of all measurements in all directions were taken. In this
way we achieve comparable training set sizes.

The results from this experiment are negative: A Bayesian
classification of room-labels performs better on the total set
of measurements than on the direction-dependent subsets.
The results are given in Table I. Hence, for a system based
on Bayesian estimation theory, we propose not to use the

Figure 5: Labeled rooms for the Naive Bayesian Estimatior.

Table I: Evaluation results

Dataset Number of Fingerprints Success Rate
All directions 78 79%

North 72 62.5%
West 77 70.13%
East 82 65.85%

South 82 71.95%

direction as a filter.

IV. ONLINE ERROR ESTIMATION

Several factors influence the occuring positioning errors
of WiFi fingerprinting systems and thus also affect the
SMARTPOS system. For many application scenarios, these
errors make an online error estimator necessary such as the
application of SMARTPOS in Bayesian filters or scenarios
of location-based access control [18]. In order to propose
a good estimator for SMARTPOS, we first examine the
properties of occuring errors in the first part of this section.
In the second part, the online error estimator which has
been developed for the SMARTPOS system is presented and
evaluated.

A. The error distribution of SMARTPOS

In order to determine the real occuring errors, a cross-
validation on the recorded reference positions has been



performed. In this experiment, each of the 316 fingerprints of
the reference database has been used as the current measure-
ment m once and was blacklisted in the process of nearest
neighbor selection. This tends to cause slightly increased
errors, as the reference positions are reduced by m, but the
larger size of samples allows to derive a stronger assumption
of the error distribution. The position estimation was based
on weighted kNN with k = 4, considered the orientation and
did not punish missing RSSI, i.e., the optimal SMARTPOS
setting. The results are shown in Figure 6 as a 2-dimensional
histogram, representing the observed error vectors of posi-
tion estimates relative to their ground truth position. The
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Figure 6: Histogram of the observed error distributions on
the x- and y-axis. On each axis, 12 bins have been created
for the 316 results.

results give good incidence to assume that the errors on
each axis follow approximately a Gaussian distribution. We
ignore any correlations on the axes and even the (obviously
existing) differences concerning the deviation, since most
services working with inaccurate position information expect
a circle as error estimator. Thus we model the occuring errors
as twodimensional univariate Gaussians, which is also an
important constraint for the proposed estimator as shown
later in this section. The individual distribution for each
axis is shown in Figure 7. Obviously, the errors on the
x-axis tend to have a higher standard deviation which is
caused by the fact that the recorded reference positions have
a larger extent on the x-axis, as depicted in Figure 1. In
order to fortify the assumption of normally distributed errors
a Wilk-Shapiro test has been performed for each axis for
50 randomly selected samples of the measured errors. The
results showed a test statistic of Wx = 0.960 for the x-axis
and Wy = 0.955 for the y-axis. Given a level of significance
of α = 0.05, the critical value of W is 0.947 for n = 50
which is lower than Wx and Wy . Thus, the assumption of
normal distribution can not be rejected for the given level of
significane, which allows to define an online error estimator
for SMARTPOS based on Gaussians.

6 4 2 0 2 4 6

Observed error

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

P
ro

b
a
b
ili

ty

x-axis best fit
y-axis best fit
x-axis
y-axis

Figure 7: Histogram of the observed error distributions on
the x- and y-axis.

B. Estimating positioning errors

As in the last section, the assumption of a normal dis-
tribution has been strengthened this section aims at giving
an estimation of errors with Gaussians. The mean values
correspond to the specific position fix and for each fix,
an empirically estimated standard deviation is derived. For
k > 2, three different error estimation schemes have been
defined by Lemelson et. al [13] based on the coordinates
(l1, l1, . . . , lk) in R2 of k nearest neighbors in signal space.
These methods estimate the error, i.e., the geographic dis-
tance of the position fix to the ground truth position. For this
task, the first method σm1 computes the average geographic
distance of the second up to the kth fingerprint to the nearest
neighbor:

σm1(l1, l2, · · · , lk) =
1

k − 1

k∑
i=2

‖l1 − li‖2 (3)

Another modification computes the error estimate as the
maximum geographic distance of any selected neighbor to
the nearest neighbor:

σm2(l1, l2, · · · , lk) = max

 ⋃
i∈{2,...,k}

{‖l1 − li‖2}

 (4)

Finally, a third version estimates the error as the maximum
geographic distance of any two fingerprints in the sequence
of selected nearest neighbors:

σm3(l1, l2, · · · , lk) =

max

 ⋃
(i,j)∈{2,...,k}×{2,...,k}

{‖li − lj‖2}

 (5)

As proposed by Lemelson et al. [13], for each of these
methods the positioning error is estimated as σmi with
i ∈ {1, . . . , 3} and the user is assumed to be on a circle
with radius σmi centered at the position fix l. However,
in general, the distribution of errors approximately follows



a bivariate Gaussian as shown above. In order to allow a
more realistic estimation of the occuring error, one could
approximate the real error distribution under the assumtion
that the errors Ex and Ey on both axes are uncorrelated.
Given a position fix l = (lx, ly), this allows to define two
Gaussians Ex ∼ N (lx, σmi) and Ey ∼ N (ly, σmi) for each
i ∈ {1, . . . , 3} describing a probability distribution for the
ground truth position on each axis. In the following, we
employ this methodology for defining an univariate Gaussian
as error estimator of SMARTPOS.

For the SMARTPOS system, we propose a new error
estimator which also derives an univaiate Gaussian centered
at l but in contrast to σmi with i ∈ {1, . . . , 3} is not only
based on the positions of the k nearest neighbors, but also
on their corresponding weight and the position estimate. The
basic idea is to capture the closeness of the nearest neighbors
to the derived position fix, i.e., to derive an estimate for
the precision. Given a measurement m at the ground truth
position gtp, the only information that is online accessible is
the estimated position l and the weight wi of each fingerprint
fi according to the measurement m. For both axes, the
standard deviation σm4 is estimated as the weighted average
of the distance of the li with i ∈ {1, . . . , k} to the position
estimate l:

σm4(l, l1, l2, . . . , lk) =
k∑

i=1

wi‖l− li‖2 (6)

Again, a cross-validation was performed as described above
with an additional computation of the error estimations
σmi for the described estimators 1 − 4. To evaluate each
of these, we propose to standardize the set of observed
error distances on each axis with the corresponding σmi.
This allows to compare the standardized samples against
the standard normal distribution N (0, 1). The more likely
these samples were drawn from N (0, 1), the better the
given estimator. Thus, for each position fix l = (lx, ly) for
each axis, the standard score has been computed according
to (gtpx − lx)/σmi and (gtpy − ly)/σmi. The fits of the
standardized samples to N (0, 1) have been evaluated using
qq-plots, which are depicted in Figure 8 for the x-axis and in
Figure 9 for the y-axis. Compared to the straight line y = x,
the results indicate that the derived Gaussians for σm4 show
the best approximation of the real error within the quantiles
from −2σ to 2σ for both axes. It can also be seen that
the reduction to univariate Gaussians does not prevent the
estimator from fitting very well to the real error distribution
on both axes. The proposed approach thus returns more
accurate error estimations than the methods σm1, σm2 and
σm3. The few outliers suggest that the derived Gaussians
tend to underestimate the probability of large real errors.
These underestimations also occur with the other evaluated
methods and indicate that large errors follow another not
even necessarily Gaussian distribution. Nevertheless, the
results show that based on σm4, the derived probability
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Figure 8: The qq-plot of the generated test data on the x-axis.

density functions for the ground truth position of a position
fix correlate with the real error very well. The estimators 1-3
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Figure 9: The qq-plot of the generated test data on the y-axis.

tend to underestimate the error with respect to the straight
line x = y even within the 2σ quantiles. Clearly, σm3 tends
to highly underestimate the errors in nearly all cases. The
methods σm2 and σm1 perform slightly better but also tend
to underestimate the errors much more than σm4.

However, we also experimented with the presented error
estimators for k 6= 4 and observed that still the proposed
estimator σm4 has the best fit to x = y but tends to
increasingly underestimate the occuring errors with a grow-
ing k. Given the obtained results, we suggest that for a
given global parameter of k, the best error estimator should
be selected using the presented methodology. Compared
to existing error estimators, the derived probability density
functions in SMARTPOS are expected to yield more robust
results in real applications.



V. DENSITY OF RADIOMAPS

As the mean and maximum errors of SMARTPOS are
subject to the number of selected nearest neighbors, the
density of recorded fingerprints in the underlying radiomap
plays an important role. Hence, an interesting aspect is
how the mean and maximum errors correlate to this den-
sity. To examine this correlation, an experiment has been
conducted where these measures have been computed using
the online testset against the presented reference database,
whose density has been reduced in each iteration by 5%.
In each iteration, the 5% of fingerprints to remove have
been randomly chosen. If a fingerprint has been picked for
removal, the other 3 fingerprints on its location have been
removed too. This experiment has been conducted 20 times
in sequence. The measured errors for each iteration have
been merged and are depicted in Figure 10. The observed
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Figure 10: The average positioning error in meters for
iteratively reduced fingerprint densities.

results indicate, that the density of the radiomap has much
stronger influence on the maximum error as on the mean
error. In detail, the maximum error already doubles for a
reduction of the reference positions of 35− 40% while the
same holds for the mean error for a reduction of about 80%.
However, both, the mean and the maximum error triple for
a reduction of 90%. The results give good reason to assume,
that a more dense reference database would only show low
impact on the mean error, as the mean error seems to be
converging for higher densities. However, as the maximum
error is increased by approximately 0.5 m for a reduction of
only 5%, we expect that the maximum error of SMARTPOS
could be even further reduced by a reference database with
a higher density.

VI. DYNAMICALLY CALCULATING THE OPTIMAL
NUMBER OF NEAREST NEIGHBORS

As our previous experiment has shown, the number k
of fingerprints considered for the position estimation in
SMARTPOS has a strong impact on the mean and max-
imum error of the positioning system. However, it may

function SMARTkNN(m, min k)
l ← weighted center of mass(get NN(1, m))
k ← min k
while k < |fingerprints| do

kNN’ ← get NN(k, m)
l’ ← weighted center of mass(kNN’)
kNN” ← get NN(k + 1, m)
l” ← weighted center of mass(kNN”)
if ‖l”− l′‖2 < ‖l’− l‖2 then

l ← l’
k ← k + 1

else
return l

end if
end while
return l

end function

Figure 11: The proposed SMARTkNN algorithm.

depend on the environment and therefore scenarios exist
where no analysis of an optimal k has been performed
or is even impossible. Additionally, the covered site might
have very diverse properties with respect to the density
of recorded fingerprints, the number of receivable access
points, or building specific singularities, which makes a fixed
global k too inflexible. Even for very uniform scenarios,
like the SMARTPOS test environment, a dynamic k might
decrease the mean error. To test this hypothesis, we propose
SMARTkNN as an extension of the SMARTPOS system. Its
pseudo-code is shown in Figure 11.

The algorithm works by iteratively increasing k, and
computing a position fix for the current k, k − 1 and k + 1
based on Formula 2. It iteratively continues up to that value
of k after which the position fixes start to diverge. First,
the location l of the nearest neighbor is determined and
stored in the variable l. The variable k is initialized with
min k. Within the loop, the k and k + 1 nearest neighbors
are determined and corresponding position fixes l′ and l′′ are
computed. If the distance of l′ to its predecessor l is smaller
than the distance to its successor l′′, the loop terminates and
returns k. This represents the first optimum for the number of
nearest neighbors, as for larger values of k the position fixes
begin to diverge. In the other case, the position fixes seem
to be converging and the search for a larger k is continued.
The search also terminates if the value of k+1 corresponds
to the number of recorded fingerprints.

The SMARTkNN algorithm was evaluated with the online
testset against the reference positions for lower bounds
min k ∈ {2, 3, 4} and was compared to the k = 4
strategy and the optimal k strategy. The latter is suitable
for evaluating the proposed algorithm as the theoretical
optimal k can be used as a reference value. The results
are depicted in Table II and as a histogram comparing the



Table II: Evaluation results

Method Mean. Error Max. Error Std. Deviation
fixed k = 4 1.16 m 2.74 m 0.65 m

dynamic k ≥ 4 1.17 m 2.79 m 0.60 m
dynamic k ≥ 3 1.10 m 2.65 m 0.65 m
dynamic k ≥ 2 1.31 m 5.14 m 0.83 m

optimal k 0.66 m 2.14 m 0.51 m

number of chosen k in Figure 12. The optimal number for k
is distributed over a large interval while SMARTkNN only
picked maximally 8 nearest neighbors and thus had only
limited overhead compared to a strategy with a fixed value
for k. Furthermore, the complexity of kNN lies much more
within the distance calculation to every possible fingerprint
and the sorting of the results than in the position calculation
for given neighbors.

Compared to the SMARTPOS algorithm for a fixed k,
SMARTkNN could slightly reduce the mean error from
1.16 m to 1.10 m and the maximum error from 2.74 m to
2.65 m for a lower bound of min k = 3 without increasing
the standard deviation. A lower bound of 2 or 4 could not
improve the results compared to a fixed k = 4. Given Figure
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Figure 12: The distribution of the dynamically chosen num-
ber of nearest neighbors for SMARTkNN compared to the
optimal strategy.

13, the cumulative error distribution of SMARTkNN with
k ≥ 3 has the best fit to the optimal strategy and especially
a better fit than SMARTPOS with k = 4. An interesting
aspect is the mean size of the dynamic k: min k = 3 resulted
in a mean of 3.5 for k with a standard deviation of 0.90,
which subsequently indicates, that values from k = 3 to
k = 5 were preferably selected. This fits quite well to the
results observed in Figure 4, where the mean error had its
minimum for k = 4 with very similar values for k = 3 and
k = 5. For min k = 2 and 4, in each case the mean size of
k was further away from this minimum with mean values
for k of 2.5 and 4.7. The optimal strategy had a mean value
of k = 4.8 with a deviation of 6.6.

Concluding, the SMARTkNN algorithm showed improved
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Figure 13: The cumulative error distribution of SMARTkNN
compared to SMARTPOS and the optimal strategy.

results compared to SMARTPOS. However, even here we
have a strong dependence on the new parameter min k.
As the evaluation results indicate, a minimum value of
min k = 3 should be chosen in the presented scenario. The
lower bound of 3 also theoretically accounts for reducing
the mean error compared to a lower k as the number
of possible candidate points for position fixes is largely
increased compared to k = 2 or k = 1 using the proposed
computation over weighted center of mass.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented SMARTPOS, a positioning
system on a smartphone based on deterministic WLAN
fingerprinting and a digital compass. SMARTPOS utilizes a
weighted kNN approach with k = 4 and with a distance met-
ric in signal strength space, which ignores RSSI values from
access points visible only at one fingerprint. Furthermore,
we proposed SMARTkNN, an extension for SMARTPOS,
which uses a dynamic k instead of a fixed number of nearest
neighbors. It iteratively increases k, computes a position fix
for the current k, k − 1 and k + 1 and continues with
increasing k until the position fixes start to diverge. In
this algorithm, the first position fix is initialized with the
position of the nearest neighbor, while the minimum number
of nearest neighbors involved in the next fixes is a parameter
of SMARTkNN.

To give an impression of the system’s performance, we
analyzed the impact of several parameters on SMARTPOS.
We conclude that a weighted approach results in more
accurate and precise results than a non-weighted approach.
Ignoring missing RSSI values provides better results than
assigning a minimal value, at least for higher values of
k. In our setting, this was the case for k > 3 in the
oriented approach and for k > 7 in the approach without
the user’s orientation. With adding the user’s orientation,
SMARTPOS is able to reduce the mean positioning error to
1.16 m and the variance to 0.66 m. The maximal error in
this case is 2.74 m, which is 55 cm smaller and therefore



much better than the minimal maximum error of 3.29 m
in all experiments without the orientation information. We
therefore conclude that the user’s orientation should be
considered in deterministic 802.11 fingerprinting. The error
was reduced even more by introducing SMARTkNN: The
mean error was reduced to 1.10 m and the maximum error
to 2.65 m without increasing the variance. The cumulative
error distributions for several minimum values of k were
compared to the optimal strategy and we found that the
best results could be obtained for the strategy with k ≥ 3.
However, compared to a fixed k = 4, the improvement
was quite small but we assume that the main advantage
of SMARTkNN unfolds in very diverse scenarios, where
a fixed k yields too much inflexibility.

Furtheremore, we examined the reduction of the density
of the underlying fingerprint database. We found out that
the reduction has a large negative effect on the maximum
error but a much smaller influence on the mean error. The
reduction of about 35 − 40% doubled the maximum error
while the density has a weaker impact on the mean error
which doubles for a reduction of 80%.

Last but not least, the error distribution for SMARTPOS
was evaluated and found to be normally distributed on each
axis. Given this information, a novel online error estimator
was defined which employs the weighted average distance
of the nearest neighbors to the position fix to derive a
Gaussian probability distribution. The derived distributions
are univariate Gaussians centered at the position estimate.
An evaluation of with several existing estimators showed
that our approach gives the best approximation of the real
errors. The quality depends nevertheless on the parameter k
and degrades for k 6= 4 in our testenvironment.
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