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Abstract—Location information is one of the most important
information sources in ubiquitous computing scenarios. How-
ever, a cheap and global indoor positioning solution offering
a sufficiently high accuracy and precision for most ubiquitous
computing applications without much calibration effort is not yet
available. In this paper we present a backtracking particle filter
for sensor fusion of accelerometer, magnetometer and WLAN
signal strength measurements on a smartphone, offering high
indoor tracking accuracy and precision. Even more, we show that
backtracking leads to high quality track information where no
WLAN is available. This track information is sufficiently accurate
to provide for automated calibration or even the creation of
a complete new WLAN fingerprint database. A ground truth
position is not needed at all. The particle filter and the WLAN
calibration technique are evaluated with high quality ground
truth in a test environment at our site and the feasibility of the
algorithms is demonstrated.

Keywords-Fingerprinting Calibration, Dead Reckoning, Smart-
phone Localization.

I. INTRODUCTION

Location information is maybe the most crucial source of
knowledge for ubiquitous computing applications. In outdoor
applications location estimates can easily be computed by GPS
receivers, since the accuracy of few meters is often sufficient
for pervasive services such as navigation. However, this is
not the case in indoor environments. GPS signals suffer from
attenuation and multipath effects, offering low accuracy or no
position capabilities in indoor environments. Especially the
GPS error in altitude estimation can lead to localizing a target
on a wrong floor which for example renders navigation aids
useless. Hence, indoor localization typically relies on other
technologies.

In the past years a multitude of technologies and methods
for indoor positioning has been proposed which can be divided
into two major classes of systems. One class enables highly
accurate indoor positioning with high expenses for infrastruc-
ture and/or sensors. Ultrasonic, ultra wide band or laser-based
systems belong to this class. Those are often deployed in
single rooms, small areas, or on few mobile items, where
the benefit compensates the expenses. The second class of
systems offers a lower accuracy, but relies on existing or cheap
infrastructure and/or cheap sensors, and thus can be deployed
in a larger area. Application scenarios include indoor location-
based services in large buildings such as museums, airports, or

hospitals, e.g., pedestrian navigation or asset tracking. Here,
the underlying technology is often WLAN, cheap inertial
sensors, or a combination of both.

The advantage of WLAN-based positioning is the often
existent and, anyway, a quite cheap infrastructure of wire-
less access points (AP). But the accuracy of few meters
requires a time-consuming calibration effort which needs to
be carried out beforehand and additionally in the case of
infrastructural changes involving the APs or the structure of
the building. This effort is avoided when using cheap inertial
sensors such as the accelerometer, compass, or gyroscope of
a smartphone, but these sensors are quite inaccurate. When
used for dead reckoning, the error induced by the sensors
grows very quickly. Hence, systems based on inertial sensors
need external recalibration techniques such as map matching
or WLAN positioning. Furthermore, systems based only on
inertial sensors and map matching can only provide a position
estimate after some time, so real time positioning systems
often rely on additional information sources such as WLAN.

In this paper we combine WLAN-based positioning in form
of a fingerprinting approach with two inertial sensors of a
smartphone, i.e., digital compass and accelerometer, for accu-
rate real-time indoor positioning. The combination is achieved
with a sequential importance resampling (SIR) particle filter,
in which the accelerometer and compass readings are used
for step detection with step direction determination in the
prediction phase of the filter. WLAN signal strength infor-
mation is the input for weighting the particles in the filter’s
update phase. Particles crossing walls are eliminated by using
an efficient bitmap based map matching algorithm. We show
that the particle filter is sufficiently accurate for ubiquitous
computing applications, if up-to-date WLAN fingerprint data
is available. We also show that without WLAN support, the
particle filter converges much slower especially in cases of
building symmetries and that over time errors can add up and
reduce the accuracy of the filter with increasing tracking time.

In the case when no or only deprecated WLAN fingerprint
information is available, we propose an implicit WLAN cal-
ibration method based on dead reckoning using the inertial
sensors only. We store the track in form of all surviving
particles and their parents for backtracking, and thus retrieve
high quality tracks of the targets. While, due to backtracking,
the quality of a track increases over time, we propose to use
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the backtrack instead of the track calculated online for implicit
WLAN calibration. We show that a database of WLAN fin-
gerprints can be kept up-to-date without the need of personal
interaction or feedback and even demonstrate that a completely
new fingerprint database can be generated automatically with-
out the high effort of manual calibration. One application
scenario of our system is a fingerprint database which is
generated and kept up-to-date by the users of the system,
carrying out positioning and implicit calibration without user
interaction at the same time.

The structure of the paper is as follows. The next section
presents related work in the field of indoor positioning, particle
filter-based map matching and automated WLAN calibration.
Then, in Section III the positioning algorithm is described in
detail, also giving a short overview of the statistical back-
ground, followed by a detailed description of the algorithm for
implicit WLAN calibration. Here, backtracking is introduced
and described how it is used for keeping an existing fingerprint
database up-to-date as well as for creating a totally new
database. Our system was experimentally evaluated in a test
environment at our site, which is presented together with
the obtained results in Section V. Afterwards, the results are
discussed and the paper is concluded.

II. RELATED WORK

The topic of indoor positioning and tracking is deeply
investigated in academic and industrial research and a very
active research topic concerning ubiquitous computing. A vast
variety of technologies and algorithms have been proposed
and still no solution exists that offers satisfactory position
information for every use case or scenario.

Many pedestrian indoor positioning systems rely on WLAN
fingerprinting algorithms [5], [2], [18], [6] which offer position
estimates with sufficient accuracy (i.e., 1-3m) while utilizing
the existing WLAN infrastructure and therefore avoiding high
expenses. Fingerprinting is a pattern matching method working
in two phases: In a calibration phase a fingerprint database is
created by the collection of received signal strength indicators
(RSSI) from existing access points (AP) at certain reference
positions. A fingerprint is the tuple consisting of reference
position, eventually a direction, and a measurement vector
consisting of RSSI and AP pairs at a specific time/interval.
In the second phase (called online or positioning phase), the
positioning is carried out by comparing a vector of current
measurements consisting also of RSSI and AP pairs with the
previously stored values from the database. Some algorithms
calculate the position as the reference position of the nearest
fingerprint in signal space [2] or the average of the k-nearest
neighbors (kNN) in signal space [5]. Here one can additionally
decide whether a weighted average with the distance in signal
space as weight should be computed and whether missing
AP information should be ignored or penalized. Other al-
gorithms utilize Bayesian methods [18], [6] based on prob-
ability distributions derived by multiple measurements over a
length of time. A Gaussian model of RSSI distribution and
independence of signal strengths from different APs is often

assumed to compute the location of a target based on the
probability of observing a certain measurement at different
locations. COMPASS [6] addresses the problem of attenuation
effects caused by the body of a user. In the calibration
phase, fingerprints for several selected directions (typically
each 45◦ or 90◦) are collected at reference positions and
the users orientation, derived by a digital compass, is stored
additionally to the reference position in the fingerprint. In the
positioning phase, the user’s orientation is also measured and
only fingerprints with a similar orientation estimate are used
for positioning. Widyawan et al. developed a particle filter
for combining signal information from WLAN and wireless
sensor networks and, in the absence of inertial sensors, applied
a pedestrian movement model in the prediction phase [15]. Liu
et al. give a good overview of existing positioning systems
based on radio frequency technologies in [9].

Other pedestrian indoor positioning systems calculate the
position of a user based on inertial sensors such as accelerom-
eter or gyroscope. Woodman and Harle show in [16] that a
building model can compensate the drift of inertial sensors
and use a particle filter for a combination of foot mounted
accelerometer, gyroscope and map filtering. They show that
after some time the user can be accurately localized without
initial position information. However, they report problems
with building symmetry and add coarse WLAN positioning
for obtaining an initial position fix in their dead reckoning
system. Evennou and Marx compare a Kalman and a particle
filter for fusing location estimates of a WLAN fingerprinting
algorithm with accelerometer data [4]. While the particle filter
offers a better positioning accuracy the biggest performance
gain with respect to accuracy and precision was achieved by
the combination of inertial data and WLAN. Widyanwan et
al. propose in [14] a backtracking particle filter in a pedes-
trian dead reckoning system for fusing foot-mounted inertial
measurement units (IMU) with a building model, but neither
utilize WLAN for positioning nor their system for WLAN
calibration. There are also approaches for SLAM (Simultane-
ous Localization and Mapping) based on inertial sensors only.
Robertson et al. present a system called FootSLAM which
utilizes a particle filter to learn the accessibility map of a
building [12]. The authors utilize only foot-mounted inertial
sensors and probabilistic map in form of a grid of hexagons.
In this grid, the possible transitions between neighboring cells
are learned by observing the probabilities approximated by the
particle filter.

In recent years, many indoor positioning systems have
been adopted or developed for deployment on cell phones.
Smartphones offer many additional sensors which can be
integrated with means of sensor fusion algorithms such as
Kalman or particle filters to enhance the position accuracy
of existing systems. Martin et al. present one of the first
WLAN positioning systems, which integrates both calibration
and positioning on a mobile phone [10]. They use various
nearest neighbor algorithms, but do not use additional sensors.
Schäfer et al. demonstrate the usability of a particle filter on
a smartphone in real-time with the help of a location model
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specifically adjusted for particle filtering [13].
There exist also approaches for automated WLAN finger-

print calibration. Ledlie et al. propose in [7] a crowd sourcing
approach with user feedback for WLAN calibration. The
system combines positioning with calibration, but relies on
an active community which is willing to interact with the
system for calibration. Chintalapudi et al. present a genetic
algorithm which is able to calculate a WLAN fingerprint
database from user data without pre-deployment calibration
and without map knowledge or knowing the position of access
points [3]. Accuracy and precision of the system are quite
high, but at a high calculational effort. Finally, Woodman and
Harle propose in [17] to use position estimates calculated by
a particle filter combining foot-mounted IMU with a building
model for WLAN fingerprint map generation. They show that
the system offers a sufficiently accurate database to enable
a mesh-based WLAN position correction scheme in their
particle filter for reducing the problem of building symmetries.
Rai et al. recently developed a similar approach for WLAN
calibration [11], also integrating a backtracking particle filter.
While the methodology is similar to our approach, they do
neither describe how new measurements should influence the
creation of a new fingerprint database nor how a deprecated
database is brought up to date.

The contribution of our approach is twofold. First, we
integrate WLAN fingerprinting with compass and accelerom-
eter data by the means of a particle filter on a smartphone.
Furthermore, we make use of the performance gain with
respect to accuracy and precision induced by backtracking
to automatically and implicitly calibrate a WLAN fingerprint
database. For kNN fingerprinting, we give an algorithm for
the creation of a new database and the adaption of an existing
database with the help of new measurements.

III. LOCALIZATION WITH A PARTICLE FILTER

In this section we explain our smartphone-based system for
localization and tracking in detail. The localization is done
by a SIR particle filter, a sequential Mote Carlo method for
implementing a recursive Bayesian filter. Following [1], those
filters recursively estimate the state vector of a dynamic system
(e.g., the location, velocity and direction of movement of a
pedestrian) based on noisy observations stored in a measure-
ment vector. To be able to estimate the state, two different
models are necessary. The first describes the evolution of the
state with time and will therefore be called prediction model.
The second model describes the influence of the measurements
on the state estimation and is called measurement or update
model in the following.

The prediction model relies on the probability p(xk|xk−1)
to end up in a certain state xk at a discrete point in time
k based on the previous state xk−1. This probability can be
derived by equation (1):

xk = fk−1(xk−1, vk−1) (1)

Here, fk−1 denotes a function modeling the state transition in
time based on the previous state xk−1 and some independent

identical distributed (i.i.d.) noise vk.
The measurements zk are related to the state according to

the measurement model which is described by equation (2):

zk = hk(xk, nk) (2)

Here, hk is a known function of the state and some i.i.d. mea-
surement noise nk. From equation (2), a likelihood function
p(zk|xk) can be derived, which represents the probability to
retrieve the measurement zk in a state xk.

Using the Capman-Kolmogorov equation (3), with z1:k =
{z1, ..., zk} being all measurements up to time k,

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (3)

together with the Markov assumption p(xk|xk−1, z1:k−1) =
p(xk|xk−1) and Bayes theorem

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(4)

with the normalizing constant

p(zk|z1:k−1) =

∫
p(zk|xk)p(xk|z1:k−1)dxk (5)

one can calculate a posterior distribution based on the prior
and a new measurement zk.

In the case of particle filters, the probability distribution
function (pdf) is approximated by a set of weighted samples
called particles. These particles {xik} and their associated
weight {wik} are sequentially updated according to equations
(3) and (4). The weight wik of a particle i represents the
probability p(xk = xik|z1:k) of the target being in the state
xik. The sum of the weight of all particles is 1, so the state
xk of the system at a discrete point in time k is the weighted
sum of the states of all particles {xik}:

xk =
N∑
i

xik · wik (6)

A. Initialization, Prediction, Resampling, and Update

In the following paragraphs, we describe a particle filter
based method for indoor localization. Four different kinds
of information are used for our filter: Accelerometer data,
digital compass data, WLAN signal strength information, and
a bitmap model of the building. The state of the system
(and therefore also the state of each particle) consists of two
pixel coordinates x and y on a bitmap, the floor number
(also standing for the number of the corresponding bitmap), a
direction d, and a step length l.

The particle filter algorithm consists of several phases.
Starting with the initialization, where a first set of particles
is created, the following phases depend on the incoming data.
When a step is detected, the prediction phase is carried out
according to the prediction model. Then follows a resampling
step, where some particles are removed or splitted. Whenever
new signal strength measurements (achieved by an active scan)
are available, the update phase is executed recomputing the
weight of all particles according to the measurement model.
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For initialization of our particle filter, a predefined number
N of particles is created according to one of the following
initialization schemes: The first scheme uniformly distributes
the particles across a certain area. In the second case, all
particles are created at the same pixel coordinates and the
floor number of the corresponding map. The last scheme dis-
tributes the particles according to a two dimensional Gaussian
distribution centered at an initial WLAN position estimate with
a variance indicating the precision of the estimate. Note that
particle weights are initialized to be equal and so the density
of particles is also an indicator for the probability of being at
a certain position.

The prediction phase depends on step detection, step length
estimation, step heading detection, and map information. Step
detection is achieved by interpreting the accelerometer read-
ings in a similar way as in [8]. Based on a sliding window
of low-pass filtered consecutive accelerometer readings (which
is approximately 1s with our smartphones), a step is detected
whenever the vertical acceleration drops by more than 2ms−2

within the sliding window. Those readings are not considered
for step detection twice, so when a step is detected, previous
readings are discarded. This mechanism ensures that a single
large drop in vertical acceleration measured by consecutive
accelerometer readings is not interpreted as multiple steps.
Note that in contrast to [8], we use use rotation matrices
to calculate vertical component of the acceleration using the
phone’s orientation in the real world. Whenever a step is
detected, a trigger for the particle filter prediction phase is
fired. In this phase, each particle {xik−1}Ni=1 is moved in the
direction dk−1 of the current compass reading (perturbed by a
Gaussian random variable θik−1 drawn from N0,σθ ) for the
current step length lk−1 (perturbed by a Gaussian random
variable λik−1 drawn from N0,σλ ). Equation (7) is the concrete
application of equation (1) for each particle:

xik = xik−1 + (lk−1 + λik−1)

(
cos (dk−1 + θik−1)
sin (dk−1 + θik−1)

)
(7)

Note that we disturb each particle separately instead of
creating a number of new particles for each old particle
according to the pdf of the prediction model, because the
number of particles would grow exponentially and with a
sufficiently high number of particles the posterior pdf will
be a good approximation of equation (3). Furthermore, it
should be mentioned that the step length is recalculated during
positioning from the weighted sum of the step length of each
particle. The thought behind is that particles with unlikely step
length tend to die sooner or later due to map matching or
update from a WLAN position, so even an initially unknown
personal step length will after some time be approximated.

In addition to propagating the particles, we apply an efficient
bitmap-based map matching. When the path of a particle
(implemented as line-painting on the bitmap) includes a non-
white pixel, a collision with an obstacle has occurred and the
weight of the particle is set to zero. Note that this requires a
white representation of walkable space on the bitmap which
includes for example the removal of doors or room names

possibly depicted on the bitmap.
After the prediction phase, we a resampling algorithm is

carried out including the removal of particles with a weight
below a probability threshold and the splitting of particles with
a large weight to avoid degeneracy problems as described in
[1]. Due to real time requirements, we restrict the maximum
number of particles to the number of initial particles N .
Therefore, a particle is split, whenever its weight is at least
50% higher than N−1 and the current number of particles
is smaller than the maximum number of particles. A particle
xik is split in n new particles, where n = wikN is a rounded
natural number such that all new particles have a weight below
N−1. Furthermore, a particle is discarded, when its weight is
below N−2.

In addition to the map matching, we propose a position
correction technique based on WLAN positioning. When using
only map matching techniques, one can sometimes observe a
multimodal distribution among the particles where the particle
cloud is divided into multiple clusters of particles. This effect
can be reduced by including additional information generated
by a WLAN positioning algorithm which positioning result is
independent of the elapsed time since the positioning started
(e.g., by a fingerprinting approach). Coarse location informa-
tion is sufficient for weighting the particles according to a
measurement model. We propose a weighted kNN algorithm
from which we deduce a probability p(xk|zk) as in equation
(4). With weighted kNN and a sufficient large number of
neighbors k, we construct a bivariate Gaussian distribution
Nmx,my,σx,σy based on the weighted mean (mx,my) of the
k nearest neighbors and their standard deviation (σx, σy) to
that mean. For each particle xik, we calculate

p(xik|zk) = Nmx,my,σx,σy (xik) (8)

and combine this probability with the prior weight wik−1 of
the particle:

wik = p(xik|zk)wik−1 (9)

Finally, we normalize the weight of each particle. Note that
the update could also have been achieved by using a Bayesian
WLAN positioning system and equation (4) or any other
positioning system which can be used to construct a time
independent pdf. Since the measurement model is in this case
used only for correcting drifts over time, a coarse positioning
method is sufficient. Furthermore, the system should also be
able to offer reliable WLAN correction in the case when
only few signal strength measurements for each fingerprint are
available. Since this is the case when we apply the automated
calibration, we stick to weighted kNN instead of a Bayesian
approach in the measurement model.

Tracking accuracy and precision of this particle filter are
described in the evaluation. However, in the described form, it
requires WLAN fingerprinting for the measurement model and
thus a time consuming calibration phase. In the next section we
describe an enhancement called backtracking for our particle
filter offering high quality track history that can be used for
automated WLAN calibration.
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IV. BACKTRACKING FOR WLAN CALIBRATION

When using position data for WLAN calibration, the prob-
lem arises that the accuracy of the system used for calibration
should be better than the capabilities of the algorithm used
for WLAN positioning. One could think that this renders
the WLAN positioning superfluous, but imagine an expensive
positioning system build on top of a moving entity, e.g., a
robot. The system is too expensive to be offered to a large
number of pedestrians for example in a public building, but
can generate high quality fingerprint maps for cheap WLAN
positioning. These in turn can be used to offer low cost
localization services to other users. In the following, we
assume that no training data for WLAN positioning is available
even when WLAN signals are received.

Fig. 1. Ground truth (light green), SIR particle filter track (dark blue),
backtracking particle filter track (red), current position (grey cross), and
particle distribution during positioning.

Fig. 2. Ground truth (light green), SIR particle filter track (dark blue),
backtracking particle filter track (red), current position (grey cross), and
particle distribution some time later than Figure 1.

In our case, we have a quite accurate inertial positioning
system which can use additional WLAN information to speed
up the convergence of particles and reduce the possibility
of a growing error over time in a dead reckoning system.
The properties of a particle filter without WLAN correction
initialized with a uniform distribution, however, will lead to
multiple clusters of particles which might over some time
eventually be reduced to a single cluster. The surviving par-
ticles have traveled along a path that with a high probability
resembles the true path of the tracked entity and thus this
path provides a higher accuracy than the particles provided
at a specific tracking time. Since a higher accuracy of the

calibration system should lead to a higher accuracy of the
calibrated system, we apply a technique called backtracking
to our particle filter which computes for a given set of
particles the trajectory each particle has followed since the
start of tracking. Figure 1 and Figure 2 show the advantage
of backtracking compared to a common particle filter. The
dark blue line depicts the track estimated by the particle filter,
including the data of a large cluster of particles dying at a wall
in the room A or B (see Figure 1). The red line shows the track
updated by the backtracking algorithm, which ignores all dead
particles and thus is nearer to the real track in light green (see
Figure 2) ending in room C.

In the case of a SIR particle filter, particles with a small
weight vanish and particles with a large weight may be split
in several particles. To be able to keep record of all preced-
ing particles, we implemented the backtracking technique by
introducing a pointer for each particle which refers to the
parent particle. To achieve maximal backtracking information,
we create a new particle for each current particle in the
resampling phase (multiple particles in the case of splitting
the current particle). The new particle refers to its parent
particle which in turn is removed from the list of active
particles. Particles which die have no further children and thus
can be discarded completely (including their predecessors). In
addition to keeping track of the particles, we store the results
of consecutive scans for WLAN signal strength while walking
through the building. The measurements can be mapped to a
set of particles which represents the state of the system at the
measurement time.

During the calibration a WLAN fingerprint database, two
possible scenarios need to be distinguished. Either a possibly
deprecated database needs to be updated or kept up-to-date
or a totally new database needs to be created when no prior
information about the WLAN infrastructure is available. In the
latter case, one can only rely on other sensors to estimate the
position while at the same time scanning actively for WLAN
access points. The information gathered from scanning and
the position information at the point in time when each scan
is finished can be combined to build a reference database. In
the first case, an existing database might need to be updated
due to changes in environmental information. This way, the
existing WLAN fingerprint database can still be used for
coarse positioning and new information needs to be introduced
to the system slowly to prevent from false calibration due to
measurement errors, which could render the whole database
useless for positioning. This is a common problem arising in
comparable scenarios of unsupervised learning.

We propose to solve this problem statistically by interpolat-
ing the new (rssinew) and the old signal strength information
(rssiold) according to a specific weight ω:

rssi = ω · rssinew + (1− ω) · rssiold (10)

This approach also works for Bayesian fingerprinting tech-
niques, where in addition to the mean value a standard
deviation σ is stored for the signal strength of each visible
access point. Here, the following equation (11) is used for
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updating the old standard deviation σold in the case of new
information:

σ =
√
(1− ω) · σ2

old + ω · (rssi− rssinew)2 (11)

The weight ω is an indicator how fast the database adopts
to changes in the measured signal strength. Signals from
new access points are added without weighting. RSS values
from APs which were not detected in new measurements
are decreased by (rssiold − (−100))/ω and removed, when
rssi drops under −99 which is below the sensitivity of most
smartphones.

In contrast to other systems, we model fingerprints as those
points in coordinate space, where the signal strength measure-
ments were recorded. Additionally, we store the orientation of
the smartphone to be able to consider the attenuation effect
of WLAN signals caused by a user’s body in our system. For
WLAN calibration, we carry out scanning in the direction of
each main axis of the building storing each result as a separate
fingerprint. So the question arises which fingerprints should be
updated in case of new measurements, or where a fingerprint
should be created in the case of creating a new database.

As a simple algorithm we propose to update the nearest
fingerprint which is nearer than a predefined distance threshold
to the position at measurement time and faces into the direction
of the same building axis as the current measurement. If no
such fingerprint exists, a new fingerprint is created. This way,
the grid size can easily be regulated by setting the distance
threshold. In the case of only few new measurements, this
method will very slowly adapt the database, so one could also
think of updating all surrounding fingerprints.

The proposed algorithm is also applicable in the case of
fingerprints being areas, e.g., labeled and trained data for a
Naive Bayesian classifier. It presents a way of introducing
more weight on current measurements as on older ones,
adapting a training database to changes in the environment.

V. EVALUATION

We tested the algorithms in a office environment at our site.
All information was gathered with a HTC Desire smartphone.
All 64 reference positions for the WLAN fingerprint database
were situated on walkable space. At each reference position,
four fingerprints were created by scanning for access points
and measuring the received signal strength (RSS) while for
each single fingerprint the smartphone pointed only in the
direction of one of the main axes of the building. This
procedure resulted in 256 fingerprints in total (the gray dots
in Figure 3).

Furthermore, six tracks were recorded (see Figure 3): While
walking along a certain path through the test environment,
the readings of the accelerometer and compass were stored
together with a timestamp in a file. Both sensors generated
readings at a rate of approximately 5Hz. In addition, con-
tinuous scans for RSS values were executed (with a rate
of approximately 1Hz), enriched with a timestamp of the
measurement time, and then also stored in a file. At the same
time we saved a timestamp when passing certain reference

Fig. 3. Reference positions (gray dots) and access points (gray rectangles),
as well as ground truth tracks (green) for testing. Each displayed track was
recorded starting at the left and at the right side.

positions on the path, i.e., at all turns and at the end of the
path, which were marked on the ground. This way, high quality
ground truth position data was collected.

The evaluation is structured as follows. First of all, a short
evaluation of the components for step detection and step di-
rection estimation is given. Then the positioning performance
of the system using all three components in the particle
filter together with map matching is given, followed by an
evaluation of accuracy and precision of the system without
WLAN correction. Finally, the performance gain by utilizing
the backtracking approach is evaluated and the feasibility
of the algorithm for calibrating WLAN fingerprint maps is
demonstrated by comparing the accuracy of our system using
a manually calibrated database with the accuracy when using
the automated approach.

A. Step Detection and Step Direction Estimation

The step detection algorithm is one of the most essential
parts of our particle filter, since its results highly depend on
the quality of the prediction model and in some cases, e.g.,
for the creation of a new fingerprint database for WLAN
positioning, the algorithm will rely only on the prediction
model. The algorithm was tested with two different datasets,
each consisting of accelerometer readings recorded while
walking 50 steps along a corridor. The success rate of the
algorithm was 100%, meaning that it correctly recognized 50
steps in each dataset. No matter how good the step detection
is actually working, the step length still needs to be estimated
inducing an error to our system which needs to be corrected. In
our case, this is done by map matching and WLAN correction.

Similar important as step detection is the step heading
detection, which is achieved with the help of a digital compass.
We tested the accuracy of the orientation information by
comparing high quality ground truth track to a track computed
solely on the basis of compass data: Starting at the same
position as ground truth, we simulated movement with an
empirically solved constant speed in the direction of the
compass readings. Figure 4 shows a certain delay in the case
of abrupt turning, but the overall accuracy of the smartphone’s
compass is quite good.
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Fig. 4. The real track in light green, the estimated track in dark blue, and
error vectors are the thin red lines in between.

B. SIR Particle Filter Performance

In this section, the overall performance of the system is
described in terms of accuracy and precision. The accuracy
of the system is given in form of the mean position error
to ground truth and the error at the end of the track, while
the precision is given in form of the standard deviation. The
system was run 50 times with 10000 particles for each single
track while utilizing all available information, which was
the smartphone’s accelerometer and compass, a bitmap, and
WLAN signal strength information for comparison with a high
resolution fingerprint database. Note that the applied algorithm
for WLAN position determination is very coarse and kNN
with k = 10 was utilized for determination of the parameters
in equation (8). Since we use the WLAN positioning only as
weighting scheme for ruling out unlikely particles a coarse
position method helps to compensate for accumulating errors
while at the same time avoiding severe degeneration of the
particle cloud. Furthermore, an initial step length of 1.0m
was used which is larger as might have been expected for
a common pedestrian. This way the strength of the WLAN
update phase of the filter becomes obvious, since it offers
good accuracies even in case of over- or underestimating the
step length. Furthermore, is this a good way to demonstrate the
capabilities of the step length adaption mechanism described
in Section III-A. For disturbing step length and direction with
Gaussian noise, σλ was set to 0.2m and σθ was chosen to be
30◦. While the deviation of the step length offers support for
different persons with a varying step length, the quite large
deviation of the compass compensates for the lag in case
of abrupt turns or sudden short time disturbances caused by
electromagnetic fields.

Averaged over all tracks, the accuracy of the SIR particle
filter was 1.10m and the standard deviation 0.86m. The
average error at the end of track was 0.71m, denoting a good
accuracy gain (in comparison to the overall average error) due
to map matching and WLAN calibration which compensates
for inaccurate step length and step heading estimation.

When no WLAN fingerprint information is available, the

system has to rely on step detection, step heading detection
and map matching alone. Therefore, three other scenarios
were investigated where after the three initialization schemes,
i.e., a coarse WLAN position, a uniform distribution across
the whole area, and a fixed known starting location, only
prediction and resampling was carried out. In the case of no
WLAN at all, the coarse WLAN position can be seen as an
approximation to a similar positioning method, e.g., cellular
positioning or Bluetooth proximity detection. Table I shows
the results concerning mean error, end error, and standard
deviation averaged over all tracks.

TABLE I
OVERVIEW OF TRACKING ACCURACY AND PRECISION

Initialization Error Std. deviation End error
UNIFORM 6.30 m 3.02 m 2.30 m
Coarse WLAN 3.70 m 2.06 m 2.23 m
FIXED 1.33 m 0.78 m 1.06 m
WLAN correction 1.10 m 0.86 m 0.71 m

As can be seen in Table I, the accuracy and precision of all
results without WLAN correction stays below the accuracy
of the complete system with WLAN correction. Note that
the tracks are quite short and the many open doors in the
model lead to only few restrictions in the possible movement
of particles. This can be seen in the large mean and end error
concerning the initialization with a uniform distribution or the
coarse WLAN position. The main influence on the end error
comes from one single track, where an end error of more
than 6m (UNIFORM and Coarse WLAN) could be recognized
(compare Figure 5). In the other tracks, the algorithm was able
to recognize the true path before the end (see Figure 6 as an
example). As expected, the algorithm works best in the case
of a known starting position (see FIXED).

Figure 6 and Figure 5 show two problems a positioning
system has which supports only dead reckoning. The first
problem is known as stabilization or convergence of particles
through map matching after an initial uniform distribution.
When the initial starting position is not know and a uniform
distribution is assumed, movement and movement direction
lead after some time to a single cluster of particles. During
this period of time, the estimated position as the weighted
mean of the particles draws closer to the real position. This
can be observed in Figure 6, where the estimated path in blue
approaches the green path during positioning. This effect can
be delayed or hindered by building symmetries where multiple
possibilities of ways correspond to the measured movement.
This can be seen in Figure 5 where even a wrong hypothesis
has most of the particles weight assembled.

It can be concluded that the algorithm offers highly reliable
position information when WLAN correction is applied, the
starting location is known, or, in the case when no or only
a coarse starting location is known and no WLAN correction
is possible, after some movement time through the building
until the map matching technique leads to a single cluster
of particles. This time depends on the traveled distance,
the number and location of turns, and the symmetry of the
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Fig. 5. The real track in light green and the estimated track starting with a
uniform distribution in dark blue.

building. In the case of the test tracks the distance was in
between 15 and 30 meter (uniform distribution) or 10 to 20
meter (coarse starting position) and in one track not successful
at all with 3 three unbalanced clusters of particles remaining
after 42 meter (compare Figure 5).

Fig. 6. The real track in light green, the estimated track starting with a
uniform distribution in dark blue, and the backtrack in grey.

Before the performance of backtracking is analyzed, the
running times of the SIR particle filter need to be given.
The system is designed for real time tracking on mobile
phones and there also exists a prototypical implementation for
Android. However, the evaluation of performance was carried
out on a desktop computer for the sake of repeatability. The
running time is given as a quotient of the sensing time and the
processing time. The sensing time is the time needed to walk
along a track and collect measurements while the processing
time is the time needed for all calculations. On the desktop
environment with a 2.27 GHz processor running on a single
core, the quotient was between 0.1 and 0.06 meaning that the
precessing was at least 10 times faster than the calculations.

On the mobile phones, no direct time calculation was carried
out since the processing steps and thus the load depend on the
incoming sensor data. This means for example that when no
step is detected no prediction phase needs to be carried out
and so no calculations occure. On a Samsung Galaxy Nexus

Fig. 7. The Android version of the SIR particle filter.

smartphone with Android, real time tracking in a large building
was not a problem with up to 105 particles. See Figure 7 for
a screenshot of the mobile positioning client.

C. Performance Gain of Backtracking

For calibrating a WLAN fingerprint database, a highly
accurate and precise position system is necessary. Our system
satisfies these requirements when WLAN correction is avail-
able, the starting location is known, or the user has traveled
some time through the building. However, the first item relies
on already available and at least somewhat calibrated WLAN
fingerprint data rendering calibration dispensable. The second
item is seldom found in indoor positioning systems, but could
be available in form of a known entry point to the building. In
most cases, one has to rely on the user traveling through the
building until only one hypothesis (i.e., one cluster of particles)
survives. The whole information gathered until that moment
can neither be used for calibration nor for any indoor location
based services directly.

We explained the concept of backtracking which we apply
to solve this problem. We compare the tracking accuracy and
precision of the SIR particle filter with the backtracking parti-
cle filter. Note, however, that the backtracking takes place after
the track has been finished and thus is not applicable as online
tracking algorithm. Table II shows the results concerning mean
error, end error, and standard deviation averaged over all tracks
with one remaining hypothesis at the end (therefore only 5
tracks are included).

TABLE II
OVERVIEW OF BACKTRACKING ACCURACY AND PRECISION

Initialization Error Std. dev.
UNIFORM 1.28 m 0.62 m
Coarse WLAN 1.23 m 0.46 m
FIXED 0.94 m 0.47 m
WLAN correction 0.66 m 0.38 m

As can be seen, the mean accuracy is even better than the
end accuracy of the SIR particle filter (even when also ignoring
the track with multiple hypotheses remaining at the end). Note
also the increase of tracking accuracy in the case of available
WLAN correction. An example of a backtrack is given in
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Figure 6. We consider the accuracy adequate for automated
WLAN calibration. Furthermore, the whole track of a user
can be handled independently of the initialization method.

D. Automated WLAN Calibration

The algorithm for automated WLAN calibration is tested
in two different scenarios. In the first scenario, an old and
outdated WLAN fingerprint database is updated with the help
of two calibration tracks, each one covering every room in the
test area. The time needed to create these tracks (i.e., walking
through every room twice) was about 200 seconds. We then
compare the tracking results achieved with the old data with
those based on the updated database. Then a completely new
database is created also based only on those two tracks. For
testing the automated WLAN calibration, we again recorded
six tracks following the paths depicted in Figure 3.

The old database was created approximately six months
before the new data was recorded. During these months, a
wall was removed between two rooms, the ceiling lining was
removed in the corridor and some access points changed.
Therefore, significant changes in the fingerprint database could
be observed as expected. Furthermore, the database had no
fingerprints in one room where two paths led through. The
mean tracking error of the system using WLAN correction
was 3.31m, the mean end error 2.05m, and the mean standard
deviation 1.58m, which is far worse than the accuracy of a
calibrated system.

We then used the algorithm described before for updating
the old database with ω = 0.33. For the update, we initialized
both calibration tracks with a uniform distribution and only
considered dead reckoning (i.e., prediction and resampling
without the measurement phase) and the backtracking algo-
rithm for position estimation. After the calibration, the mean
tracking error of the system using WLAN correction was
3.13m, the mean end error 1.67m, and the mean standard
deviation 1.48m, which is better than the results on basis of the
old database but still worse than the accuracy of a calibrated
system. Interestingly enough, variations of ω in between 0.33
and 0.66 did not result in a much better performance which we
assign to the restriction of updating only the nearest fingerprint
facing in the same direction. However, the results show that
only two calibration tracks with a simple updating mechanism
offer an improvement in tracking accuracy and precision.
These results let us feel optimistic about using our WLAN
calibration scheme in a crowdsourcing solution.

To show the feasibility of our approach, we also created a
completely new WLAN fingerprint database using only both
calibration tracks and our algorithm for fingerprint creation
(see Figure 8). Both tracks were again initialized with a
uniform distribution and the particle filter, in absence of any
WLAN fingerprint data, only used dead reckoning. Tested with
the same six tracks as in the updating case, the system yielded
a mean average error of 2.03m, a mean end error of 0.87m,
and a mean standard deviation of 1.25m. Especially the small
end error shows that WLAN fingerprint data created by our
system is sufficiently accurate to serve as calibration means for

Fig. 8. The result of backtracking both calibration tracks in orange and the
created fingerprints in red.

a particle filter. Table III summarizes the results of WLAN
fingerprint calibration. So instead of updating a deprecated
database, one should think of automatically generating a
completely new one instead, especially if the sole purpose is
the stabilization of dead reckoning as in our case.

TABLE III
OVERVIEW OF CALIBRATION ACCURACY AND PRECISION

Scenario Error Std. dev. End error
Deprecated database 3.31 m 1.58 m 2.05 m
Updated database 3.13 m 1.48 m 1.67 m
Created database 2.03 m 1.25 m 0.87 m

With a little bit more than three minutes work, we automat-
ically created a fingerprint database which offers only slightly
worse positioning accuracy as a high quality database created
in 2 hours tiresome work. Our approach renders the application
of indoor positioning with low cost sensors of a smartphone
for large buildings possible.

VI. DISCUSSION

In the previous section several results concerning the track-
ing accuracy of the particle filter and the performance of
the calibration algorithm were presented. In this section we
want to discuss the results, application scenarios, and further
considerations.

The main contribution of this paper is the application of a
backtracking particle filter for WLAN fingerprint calibration.
This is besides non-time-critical tracking scenarios one of the
use cases, where no online/real-time location information is
needed. Hence, information which is available later on can be
used to update the historic state of a system, often leading to
better results. In the case of a backtracking particle filter this
does not always lead to 100% correct backtracks even in the
case of only one surviving particle cluster, because previously
separated clusters could have merged while only one of the
clusters could have described the real position of the target.
In this case additional WLAN correction could add accuracy
to the system, but, as in the case of a deprecated database of
fingerprints, could also have a negative effect. So one needs
to decide whether one includes the WLAN position correction
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and the backtracking for WLAN calibration or calculates
correction tracks with dead reckoning and backtracking only.

The correction scheme for WLAN fingerprints proposed in
this paper depends on frequent calibration measurements. We
think of a system, where sensor data is used for both, calcu-
lation of a target’s position and updating the database at the
same time. We plan to evaluate by simulation how many users
would be needed to keep such a system up-to-date. Instead of
starting with an empty database, one could also think of a
modeling approach, where the initial database is calculated
from a mathematical model instead of measurements. This
model could then be refined by our method.

The results presented in the previous section raise the hope
for cheap, easy and accurate pedestrian indoor position. Nev-
ertheless, did the test environment not incorporate large halls,
multiple levels, nor many persons causing strong fluctuations
in WLAN signal strength. While multiple levels can be han-
dled by including an altimeter to the system, which can already
be found in today’s smartphones, and/or by applying stair
detection in addition to step detection, the feasibility of the
approach in other environments as an office building still needs
to be examined. Whether WLAN fingerprint calibration in
large crowds makes any sense at all should also be considered
when thinking of applying our system. Here, switching to AP
visibility instead of signal strength could gain a lot.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented a SIR particle filter for fus-
ing accelerometer, magnetometer and WLAN signal strength
information on a smartphone for accurate and precise po-
sitioning and tracking in indoor environments. Furthermore,
we described a backtracking algorithm which is utilized for
increasing the accuracy and precision of tracks after recording,
thus leading to even higher quality of tracks, especially when
no WLAN information or no initial location information is
available. The generated high quality tracks are the basis
for our proposed automated WLAN fingerprint calibration
scheme for keeping existing fingerprint databases up-to-date or
creating completely new fingerprint databases. The feasibility
of this approach has been demonstrated in a test environment
at our site.

The SIR particle filter with a high quality WLAN fingerprint
database could achieve a mean positioning error of 1.10m,
a end error of 0.71m, and a standard deviation of 0.86m.
With the backtracking algorithm, the mean positioning error
could even be reduced to 0.66m with a standard deviation of
0.38m. For the WLAN calibration, two tracks without initial
position information covering every room in the environment
were recorded. Based on the gathered data, a coarse WLAN
fingerprint database was automatically created which offered
a mean positioning error of 2.03m with a standard deviation
of 1.25m and an end error of 0.87m. Considering the time
for creation, which was a little bit more than 3 minutes in the
case of automated calibration and approximately 2 hours for
the high quality database, the results are quite promising.
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