
IndoorSim: Simulation of Wireless-LAN-Based Indoor
Positioning Systems Incorporating CAD-Floorplans

Martin Werner
Ludwig-Maximilians-Universität München

Oettingenstraße 67, 80538 München
martin.werner@ifi.lmu.de

Abstract: With this paper, we explain a simulation environment for the popular area
of Wireless-LAN-based indoor positioning based on free software. Using GNU Oc-
tave and typical radio propagation models, this open source indoor localization en-
vironment allows one to develop, analyze, understand and teach indoor positioning
algorithms based on CAD-plans. The toolkit allows for calculating complex Wireless-
LAN propagation maps, generate sequences of measurements following paths drawn
in CAD, generation of room-based or coordinate-based fingerprinting databases as
well as statistical analysis including the effect of noise on positioning accurarcy and
precision. Furthermore some extraordinary simple data formats are proposed to facili-
tate exchange between indoor localization researchers and to support the collection of
measurements for the indoor positioning community.

1 Introduction

In the last decade many new services for mobile phones emerged which integrate the lo-
cation of a mobile terminal into the service. With the broad availability of GPS-based
smartphones and the growth of fingerprinting localization databases for the outside area,
this type of service has become very simple to implement. Due to the strong limitations
induced by the small display and difficult on-display input, the integration of location
information leads to better service experience and allows for guidance and navigation ser-
vices.

However, the position of a mobile phone can only be determined for the outside area,
as GPS is not available in indoor environments. Nevertheless it could be very useful to
have some insight in the geolocation of mobile devices inside buildings or even to have a
continuous positioning integrating the outside area and indoor environments.

Due to the complexities in setup and maintenance of indoor positioning systems, wide
support for indoor geolocation is not available. However there are many examples of
specialized indoor geolocation systems which reach acceptabe accuracy and precision.

In general, indoor geolocation can be determined by measurements of physical parameters
which vary with location. There are many systems based on special infrastructure brought
into the building. The classical systems were often based on infrared light due to the
availability of infrared-technology in these days. Others were using ultrasonics which



have very good diffuse propagation charachteristics. Two such systems are the Active
Badge System [WHFG92] based on diffuse infrared light emitted from tags and read from
a distributed network of sensors and the Cricket Location Support System presented in
[PCB00].

These can provide high accuracy and dependability, but induce infrastructure costs. Other
systems are based on existing infratsructure such as Wireless-LAN access points. These
systems reach only limited accuracy, but do not induce infrastructure costs and hence have
a better chance in providing ubiquitous services not limited by an administrative domain.

In this paper, we want to focus on indoor geolocation using Wireless-LAN infrastructure.
We present a public domain simulation environment which can be used to design, evaluate
and test Wireless-LAN-based positioning systems for indoor environments.

2 Related Work

Now, how can an existing Wireless-LAN infrastructure be used to provide indoor geolo-
cation? Wireless-LAN typically consists of a distributed system of access points, where
mobile terminals (clients) can associate with. As the mobile terminal needs to know, that a
Wireless-LAN infrastructure is available, access points periodically broadcast beacon mes-
sages signaling their presence. To facilitate a good choice of access point, a client typically
tries to associate with a Wireless-LAN access point with the best signal. As the channel
quality measures are unknown at this point in time, Wireless-LAN clients typically rely
on signal strength information which is therefore reported by most Wireless-LAN drivers.
As Wireless-LAN uses a narrowband signal for communication, the signal strength can be
modelled as a constant number and not depending on the frequency as for example with
wideband systems.

From empirical studies, we know, that the signal strength of a Wireless-LAN system de-
pends strongly on the distance between sender and receiver, the propagation path and
several effects such as noise, self-interference, distortion, scattering etc.

Though the physical properties of all these signal parameters are well-studied, we can
not use them in practice, as we typically do not have a model of the surroundings which is
correct enough. Therefore, we typically rely on statistical methods and simplified propaga-
tion models to induce distances from signal strength information in some sort of regression
analysis and machine learning.

2.1 Wireless-LAN signal propagation models

The most simple propagation model, which can be applied to Wireless-LAN signal, is
the propagation in free-space (vacuum). The following equation gives the corresponding
equation (λ is the wave length, d denotes distance, the results are given in dB) modelling



the physical relationships:

E(d) = 10 log10

(
4πd

λ

)2

This equation consists of an application of the “inverse square law” which states, that
radiated energy of a point source fades with the square of the distance, as the energy
is distributed across the surface of a sphere (4πr2), which grows quadratically with the
radius. The other component is modelling the aperture of the receiving antenna and is
frequency-dependent.

Assuming a narrowband signal with constant frequency f = c
λ and incorporating this

inaccurarcy and all other effects (antenna gain, propagation path, reflection, distortion
etc.) into the exponent (2 in the equation above) and a reference starting value at a fixed
distance d0, we find the so-called “One-Slope Model”, whose model parameters α and
E(d0) are derived from measurements.

E(d, α) = E(d0)− 10α log10

(
d

d0

)
The reference distance is typically taken as 1m. Typical values for α are given in the
literature [Rap02] ranging from 1.8 to 3. The influence of specific material on Wireless-
LAN propagation is studied in [ZBB05].

The next obvious refinement of this model is to add support by a floorplan. In a floorplan,
we could calculate the number of walls which have to be penetrated and calculate a com-
mon wall attenuation factor. Taking this refinement, we end up with the Motley-Keenan
model [MK88], which is used for example in RADAR [BP00]. The refined model equa-
tion is given below, where the constant wall attenuation factor is given asW and n denotes
the number of walls between reciever and transmitter.

E(d, α, n) = E(d0)− 10α log10

(
d

d0

)
− nW

Based on the previous propagation models, which are purely based on the direct connect-
ing line between sender and reciever, several models have been proposed and discussed,
which take into account other propagation paths. The problem with simulating the phys-
ical properties are twofold: First of all the available floorplans are not sufficiently correct
and on the other hand the solvation of the involved differential equations with finite differ-
ence methods or finite element methods is computationally very expensive. A good way in
the middle is the adoption of raytracing techniques, as they give good results with medium
calculational overhead [TMDH08]. Another technique, which further reduces from the
complexities of raytracing is the calculation of so-called dominant paths [WWW+05] and
using the length of these dominant paths as the distance parameter form some distance-
based propagation model.



2.2 Noise in RSSI readings

The most critical difficulty in determining the indoor geolocation is given by noise. The
recieved signal strength at a fixed location varies over time. This noise consists of inaccu-
racy of the measurement equipment as well as changes in the environment. The recieved
signal strength was measured in a long time experiment with a HTC Desire smart phone
and a modern Wireless-LAN infrastructure. The results are given in Figure 1

Figure 1: Long term RSSI readings taken from a fixed position in an office environment

Figure 2: A the histogram for one of the access points

As you can see, the signal strength is fluctuating quickly. Fortunately, the distribution
of the measurements is mainly following a gaussian process, as you can see from the



histogram given in Figure 2. Furthermore the spectral power density is nearly constant
(i.e. the noise is nearly white), as you can see from integrating the fourier transformation
of the measurements, which results in a (nearly) straight line.

Based on this experiment, we decided to add random white gaussian noise to our model
equation to simulate this time fluctuation in measurements. Of course, this approach im-
plies, that algorithm validation has to be done using a multiple of different random noise
samples, such that the result is not based on being lucky with respect to noise addition.

2.3 Wireless-LAN positioning algorithms

Radio-based positioning algorithms can be divided into two groups: The first class of
positioning algorithms induces a coarse, logical position (e.g. a room label) from the mea-
surements. Therefore a labelled dataset is used for training and a classification algorithm is
used for predicting the label of newly arriving measurements. The other class of position-
ing algorithm uses a database of measurements taken at different positions and a method
of numerical prediction such as weighted k-next-neighbours or some regression technique.
A direct application of the radio propagation models with a map with the accesspoint lo-
cations using the well-known multilateration technique does not work out good enough.
The complexities of multipath propagation and errors in the floorplan induce to much dif-
ference for this type of localization technique. However it is relatively easy to use, as the
distance measurements are combined into a overdetermined linear equation which can be
solved by means of least squares regression.

3 Simulation Environment Based on Octave

In this section we describe, how we implemented a simulation environment which takes
into account all effects described in the previous chapter and can be used to implement, test
and evaluate indoor localization algorithms with simulated data and even with real track
data in one homogenuous environment. As the technical basis we decided to use the Oc-
tave [Eat02] software suite, which is an open source environment providing a workbench
for numerical computations similar to the commercial Matlab software.

3.1 Representing the Simulation Data

For our simulation environment, we need a representation of a CAD-floorplan which is
well-suited for use with the calculations, we make on this data basis. We decided to
represent a CAD file as an ordered sequence of lines which all have a starting point and an
endpoind in two-dimensional coordinates. Layer information is silently dropped. Hence,
a CAD-file is represented as a n × 4-matrix where each row of the matrix represents one
line. Complex entities such as circles, arcs, splines and bulges are tessellated into line



strips shorter than a given constant tessellation threshold.

This representation of CAD is very straightforward, but does not fit to the plotting im-
plementation of Octave. For plotting purposes, the line-function expects line lists to be
n × 2 matrices of points, which are all interconnected. Plotting multiple lines is done by
inserting a point [NaN,NaN] into this sequence.

The chosen representation is well-suited for calculating a propagation model based on the
access point position, parameters and the Motley-Keenan Model. This is implemented in
a module ins_calculateDiscreteModel, which takes a floorplan, a position, some global
settings for the wall attenuation factor and the access point reference quantities and prop-
agation coefficient. Figure 3 shows how such models might look like based on a trivial
floorplan with and without noise.

Figure 3: A simple floorplan is used to illustrate propagation modelling using the IndoorSim

For a real floorplan figure 4 shows how complex the propagation can become, if the rooms
become a bit more complex. This visualization is without any additional noise. It is simply
Motley-Keenan propagation on a CAD floorplan.

For the simulation of a realistic indoor localization scenario, we also need the positions
and signal strength (signal power at reference distance) parameters of the access points.
These are also modelled as a matrix. In each row of this matrix, the CAD coordinates of
the access points and some access point parameters can be specified.

To generate a realistic situation for an indoor positioning algorithm, there are two methods:
It is possible to generate a fingerprint database based on a rectangular lattice, to follow
a polyline on a special layer in the CAD drawing and to generate a fingerprint at each
point in the polyline. Furthermore we have a special module which is able to load room
polygon data from CAD, if available. In this situation, the generated fingerprints can be
labelled with room labels providing for easy and efficient generation of training databases
for classification-based location determination systems.



Figure 4: The propagation model for a real floorplan calculated by IndoorSim

3.2 Fingerprints and Tracks

A fingerprint consists of a (2 + n) row vector. The first two entries give the x and y
coordinate of the fingerprint position. The rest of the vector consists of the values of RSSI
for each of n access points. It is possible to generate these from the simulation framework,
to load them from a file and to alter them by random white gaussian noise. A fingerprint
track with m points consists of a m × (2 + n) entries, each line representing one point.
Unfortunately it is not possible to have missing values in this matrix. The availability of a
RSSI-value reading for a positioning system can be influenced by a global constant (below
which values are not used).

3.3 Positoining Algorithms

Within the simulation framework, we implemented several baseline positioning algorithms,
which are ready for use. The first one is the classical approach used by RADAR: Weighted
k-next-neighbors in signal space. For this positioning algorithm, a grid-based fingerprint
database is constructed. To obtain the position of a mobile node from sensor readings, the



k next neighbors (for an integer configuration value k) are used. Then these are weighted
by the euclidian distance in signal space to the incoming sensor reading. The positions of
these k next neighbours are then combined using a weighted sum p =

∑
wipi. It is essen-

tial to use a well-defined value k for a fingerprint database. If k is too small, the position
values get very noisy depending on the resolution of reference values. If the value k is
too large, determined positions tend to drift away towards a mean of the positions of the
surrounding access points. A typical situation for this positioning algorithm was simulated
using a CAD floorplan and the simulation environment.

Figure 5: Weighted-kNN on a synthetic floorplan using k = 3 and a simulated Wireless-LAN
environment.

Figure 5 shows a floorplan, a track inside the floorplan and the deviation of each track-
points positioning result from the ground truth. What you can see, is that it sticks near the
right path, but with a pretty random deviation into all directions. However, as you can see
clearly from the picture, the rooms are assigned correctly in most cases.

This effect gives rise to another positioning task of finding the correct position out of a set
of measurements. Therefore, the simulation environment is able to load CAD-files in DXF
format which contain one closed polyline for each room. Then fingerprints are generated
in a regular grid, just as before, but each of them is assigned a room label. The results
are then stored in the ARFF format as used by Weka [HFH+09] for data mining. Using
the Naive Bayes classificator implemented in weka, room-based positioning using simu-



lated Wireless-LAN received signal strength is possible with this simulation environment.
This type of label-based indoor positioning is widely used in practice, as it is much more
reliable. A visualization of a room localization is given in Figure 6.

Figure 6: Label-based indoor localization based on polygonal room data

4 Outlook

With our simulation framework it is now possible to simulate Wireless-LAN-based indoor
positioning. While it is now mainly a tool for teaching we hope to extend the functionality
and make it a widely-used framework for signal-based indoor positioning research. We
hope to provide a system which will help beginners to understand and analyze in detail
well-known indoor positioning algorithms and signal charachteristics while being power-
ful enough to facilitate professional use and data exchange. The most important problem
for researchers in the area of indoor positioning is the difference between buildings. It is
difficult to show, that a special positioning approach is better than a simpler one in general
and not only due to overfitting to the test environment. If research would adopt a suffi-
ciently simple data format and share measurements, the whole area of research would be
much more reliable and honest. Moreover the implementation of more complex propaga-
tion models and the automatic generation of fictional floorplans can help much in com-
parision of methods. The project is open source and is currently hosted at Google Code
[Wer11].
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